Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080013-9    https://doi.org/10.11896/cldb.23080013
  无机非金属及其复合材料 |
石墨表面双辉等离子Ta/TaC涂层抗热震性能研究
王彦1, 杨凯1, 吕绪明2,3, 党博1, 魏东博1, 张平则1,*
1 南京航空航天大学材料科学与技术学院,南京 210016
2 核工业理化工程研究院,天津 300180
3 粒子输运与富集技术国防科技重点实验室,天津 300180
Thermal Shock Resistance of Double-glow Plasma Ta/TaC Coating on Graphite Surface
WANG Yan1, YANG Kai1, LYU Xuming2,3, DANG Bo1, WEI Dongbo1, ZHANG Pingze1,*
1 School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
3 Science and Technology on Particle Transport and Separation Key National Defense Laboratory, Tianjin 300180, China
下载:  全 文 ( PDF ) ( 57045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善石墨电极表面涂层与基体间因力学性能及热膨胀系数差异而导致的热失配问题,采用双层辉光等离子表面渗金属技术在石墨表面分别制备了Ta、TaC涂层和Ta/TaC复合涂层。XRD结果表明,Ta涂层表面物相主要由Ta、Ta4C3和Ta2C构成,TaC和Ta/TaC涂层表面为纯TaC相。SEM结果表明,所有涂层均由涂层-基体互扩散层和表面沉积层组成,且内部均匀致密。相较于TaC物相,Ta单质更容易扩散进入石墨基体;相同条件下TaC在Ta上生长速率更快。力学性能测试结果表明,Ta涂层作为TaC涂层和石墨之间的过渡层,因其良好的物理缓冲作用能够有效提高TaC涂层与基体的结合强度和显微硬度。热震结果表明,在室温与650 ℃之间循环40次后,单层TaC涂层因极大的应力失配产生严重崩裂而剥落;Ta/TaC复合涂层因Ta过渡层的存在有效缓解了冷热循环过程中的应力失配问题,热冲击后表面未发现裂纹且膜基界面结合依旧良好,涂层的抗热冲击性能得到显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彦
杨凯
吕绪明
党博
魏东博
张平则
关键词:  石墨电极  碳化钽  复合涂层  双辉  抗热震性能    
Abstract: In order to alleviate the thermal mismatch between the graphite electrode surface coating and the substrate due to the disparity in mechanical properties and coefficient of thermal expansion, Ta, TaC and Ta/TaC coatings were prepared on the graphite surface by double-glow technology. XRD results show that the surface phase of Ta coating is mainly composed of Ta, Ta4C3 and Ta2C, while the surface of TaC and Ta/TaC coating is pure TaC phase. SEM results show that all coatings are composed of interdiffusion layer and surface deposition layer, and the interior is uniform and dense. Compared with TaC, Ta is easier to diffuse into the graphite, and TaC is easier to grow on Ta under the same conditions. The mechanical properties test results show that Ta coating can effectively improve the binding quality and microhardness of TaC coating and substrate because of its excellent physical buffering effect. The thermal shock results show that the single-layer TaC coating is spalling se-riously due to great stress mismatch after 40 times of cycles between room temperature and 650 ℃. Ta/TaC composite coating can effectively alleviate the stress mismatch in the process of cold and hot cycling due to the existence of Ta transition layer. No cracks are found on the surface and the film-base interface is still good. The thermal shock resistance of the composite coating is significantly improved.
Key words:  graphite electrode    tantalum carbide    composite coating    double-glow    thermal shock resistance
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TB332  
  TB304  
通讯作者:  * 张平则,南京航空航天大学材料科学与工程学院教授、博士研究生导师。目前主要从事等离子表面工程的研究工作,主要研究方向为钛合金阻燃(防钛火)涂层的设计、制备与性能评价,钛铝合金等离子表面强化及苛刻环境服役性能、寿命评估,全寿命周期高性能海洋腐蚀涂层材料的制备及失效机制和航空材料动静态微细观力学性能的实验研究与多尺度计算机模拟等。zhangpingze@nuaa.edu.cn   
作者简介:  王彦,2021年6月于南京信息工程大学获得工学学士学位。现为南京航空航天大学材料科学与工程学院硕士研究生,在张平则教授的指导下进行研究。目前主要研究领域为材料等离子表面工程。
引用本文:    
王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
WANG Yan, YANG Kai, LYU Xuming, DANG Bo, WEI Dongbo, ZHANG Pingze. Thermal Shock Resistance of Double-glow Plasma Ta/TaC Coating on Graphite Surface. Materials Reports, 2024, 38(23): 23080013-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080013  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080013
1 Jiang Y, Ye C C, Ru H Q, et al. Rare Metal Materials and Engineering, 2018(S1), 4 (in Chinese).
姜岩, 叶超超, 茹红强, 等. 稀有金属材料与工程, 2018(S1), 4.
2 Wang P, Han W B, Jin X X, et al. Journal of Alloys & Compounds, 2015, 629, 124.
3 Qiang X, Li H, Zhang Y, et al. Corrosion Science, 2011, 53(1), 523.
4 Wang K, Guo Q, Zhang G, et al. Surface and Coatings Technology, 2007, 201(16-17), 7472.
5 Xue L M, Jin Y Z, An B C, et al. Carbon, 2018(4), 42 (in Chinese).
薛丽梅, 金燚翥, 安保成, 等. 炭素, 2018(4), 42.
6 Chen K, Yang H, Liang F, et al. Acs Applied Materials & Interfaces, 2018, 10(1), 909.
7 Zhang Y L, Li H J, Hu Z X, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(7), 2118.
8 Zhao J, Liu L, Guo Q, et al. Materials Letters, 2006, 60(16), 1964.
9 Tian Y, Jiang Y, Fu W L. Refractories, 2023, 57(1), 6 (in Chinese).
田原, 姜岩, 付琬璐. 耐火材料, 2023, 57(1), 6.
10 Wang C, Guo B, Lu P, et al. Ceramics International, 2022, 48(9), 12450.
11 Shen X S, Wang S, Li W, et al. Journal of Synthetic Crystals, 2017, 46(6), 7 (in Chinese).
沈小松, 王松, 李伟等. 人工晶体学报, 2017, 46(6), 7.
12 Kumar S, Mondal S, Kumar A, et al. Coatings, 2017, 7(7), 101.
13 Kim H M, Choi S C, Kim Y, et al. Journal of Ceramic Processing Research, 2020, 21(1), 92.
14 Balani K, Gonzalez G, Agarwal A, et al. Journal of the American Ceramic Society, 2006, 89(4), 1419.
15 Kim H M, Choi K, Shim K B, et al. Korean Journal of Materials Research, 2018, 28(2), 75.
16 Nakamura D, Suzumura A, Shigetoh K. Applied Physics Letters, DOI: 10.106311.4913413.
17 Wang K, Guo Q, Zhang G, et al. Surface & Coatings Technology, 2007, 201(16-17), 7472.
18 Wang P, Han W B, Zhang X H, et al. Ceramics International, 2015, 41(5), 6941.
19 Jiang Y, Ye C, Ru H, et al. Ceramics International, 2018, 44(5), 5171.
20 Xu Z, Liu X, Li Z, et al. Chinese Journal of Mechanical Engineering, 2002, 15(2), 186.
21 Gao Y, Xu J Y, Gao Q, et al. Hot Working Technology, 2006, 35(6), 56.
22 Gao Y, Xu J Y, Gao Q, et al. Hot Working Technology, 2007(8), 78 (in Chinese).
高原, 徐晋勇, 高清, 等. 热加工工艺, 2007(8), 78.
23 Liu M, Li S, Gao C H. Acta Metrologica Sinica,2020, 41(6), 696 (in Chinese).
刘明, 李烁, 高诚辉. 计量学报, 2020, 41(6), 696.
24 La L, Wang L, Liang F, et al. Surface and Coatings Technology, 2023, 464, 129429.
25 Meng Y, Deng J, Wu J, et al. Journal of Materials Processing Technology, 2022, 304, 117570.
26 Chen Q H, Deng H B, Xiao Z C, et al. Carbon, 2007(2), 11 (in Chinese).
陈青华, 邓红兵, 肖志超, 等. 炭素, 2007(2), 11.
27 Yang H Z, Liu B. Rare Metal Materials and Engineering, 2022, 51(5), 1773 (in Chinese).
杨红志, 刘波. 稀有金属材料与工程, 2022, 51(5), 1773.
28 Li G D, Xiong X, Huang B Y, et al. The Chinese Journal of Nonferrous Metals, 2007(3) 360 (in Chinese).
李国栋, 熊翔, 黄伯云, 等. 中国有色金属学报, 2007(3), 360.
29 Sun H Q, Zhang J X, Yan D R, et al. Heat Treatment of Metals, 2009, 34(5), 46 (in Chinese).
孙海全, 张建新, 阎殿然, 等. 金属热处理, 2009, 34(5), 46.
30 Lang Q K, Zhang J, Ma H L, et al. Vacuum, 2015, 52(6), 10 (in Chinese).
郎清凯, 张钧, 马海玲, 等. 真空, 2015, 52(6), 10.
[1] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[2] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[3] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[4] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[5] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[6] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[7] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[8] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[9] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[10] 王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
[11] 张曦挚, 崔红, 张嘉豪, 胡杨, 邓红兵. C/C-SiC:W/Cu复合涂层的制备和性能[J]. 材料导报, 2023, 37(15): 21120238-6.
[12] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[13] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[14] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[15] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed