Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23020055-10    https://doi.org/10.11896/cldb.23020055
  金属与金属基复合材料 |
镁锂合金中LPSO相的研究进展
段逸飞1, 王建利1,*, 袁满2, 王礼营1,3, 杨忠1, 李菲1, 田皓1
1 西安工业大学材料与化工学院,西安 710021
2 中国船舶重工集团公司第十二研究所,陕西 兴平 713102
3 西安天力金属复合材料股份有限公司,西安 710299
Research Progress on Long Period Stacking Ordered Phase in Magnesium-Lithium Alloys
DUAN Yifei1, WANG Jianli1,*, YUAN Man2, WANG Liying1,3, YANG Zhong1, LI Fei1, TIAN Hao1
1 School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
2 CSIC No.12 Research Institute, Xingping 713102, Shaanxi, China
3 Xi’an Tianli Metal Composite Material Co., Ltd., Xi’an 710299, China
下载:  全 文 ( PDF ) ( 6458KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与其他金属结构材料相比,被称为超轻材料的镁锂合金具有超低密度、高塑性、高比强度、高比刚度及良好的阻尼减震等优异性能,是航空航天、武器装备等对质量密度极其敏感的高端制造领域的理想材料。然而绝对强度过低,尤其是强化相容易发生过时效导致性能大幅下降,严重限制了其多场景、规模化的生产应用。近年来在Mg-RE-TM合金中发现的长周期有序堆垛结构(LPSO相),具有较高的强度与热稳定性,能够有效提高镁合金的强度、塑性及高温抗蠕变性能,同时还可改善合金耐蚀性、电磁屏蔽性及阻尼减震性能等,为Mg-Li 合金的强韧化及功能性结构材料的研发提供了新思路。本文在简要总结LPSO相的结构类型与形成机理的基础上,综述了含LPSO相镁锂合金组织和性能的国内外研究现状,并指出了未来研究工作的重点发展方向,以期为含LPSO相新型镁锂合金的开发和性能调控提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段逸飞
王建利
袁满
王礼营
杨忠
李菲
田皓
关键词:  镁锂合金  长周期有序堆垛结构  显微组织  力学性能  耐蚀性能    
Abstract: Compared with other metal structural materials, magnesium-lithium alloys, which are known as ultra-light materials, exhibit excellent properties such as ultra-low density, high plasticity, high specific strength, high specific stiffness and good damping performance, and are ideal materials urgently needed in high-end manufacturing fields such as aerospace and weapons and equipment that are extremely sensitive to mass density. However, the low absolute strength, significant decrease in strength due to the over-aging of strengthening phases severely restricts the multi-scenario and large-scale applications. In recent years, the long period stacking ordered phase (LPSO phase) discovered in Mg-RE-TM alloy demonstrates high strength and thermal stability, which can effectively improve the strength, plasticity and creep resistance of magnesium alloys, as well as the corrosion resistance, electromagnetic shielding and damping coefficient. It provides new ideas for strengthening and toughening Mg-Li as well as the research and development of functional structural materials. On the basis of a brief summary of the structure types and formation mechanisms of LPSO phases, this article reviews the current research progress on microstructure and properties of magnesium-lithium alloys containing LPSO phase at home and abroad, and points out the key development directions of future research work. This review can help to improve the development and performance regulation of new types of magnesium-lithium alloys containing LPSO phase.
Key words:  Mg-Li alloy    long period stacking ordered phase    microstructure    mechanical properties    corrosion resistance
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG146.2  
基金资助: 陕西省重点研发计划项目(2021LLRH-05-08;2021LLRH-05-09;2023-LL-QY-33); 西安市秦创原“科学家+工程师”项目(23KGDW0014-2023);陕西省自然科学基础研究计划项目(2022JM-239)
通讯作者:  * 王建利,西安工业大学材料与化工学院教授、博士研究生导师。2009年于中国科学院长春应用化学研究所博士毕业后到西安工业大学材料与化工学院工作至今,主要从事镁、铝合金及其复合材料成分/结构设计及性能研究。近年来,主持或承担国家自然科学基金项目、国防“十三五”共用技术项目、国防“十二五”专用技术项目、陕西省重点研发计划、陕西省科技统筹创新工程项目等。获陕西省科学技术进步二等奖、国防科学技术进步二等奖、陕西高等学校科学技术一等奖和陕西省国防技术奖励一等奖等多项奖励。在国内外重要学术期刊发表SCI、EI收录论文40余篇。jlwang@xatu.edu.cn   
作者简介:  段逸飞,2020年6月于宝鸡文理学院获得工学学士学位。现为西安工业大学材料与化工学院硕士研究生,在王建利教授的指导下进行研究。目前主要研究领域为轻质镁锂合金的强韧化。
引用本文:    
段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
DUAN Yifei, WANG Jianli, YUAN Man, WANG Liying, YANG Zhong, LI Fei, TIAN Hao. Research Progress on Long Period Stacking Ordered Phase in Magnesium-Lithium Alloys. Materials Reports, 2024, 38(20): 23020055-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020055  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23020055
1 Peng X, Liu W C, Wu G H, et al. Journal of Materials Science & Technology, 2022, 99(4), 193.
2 Lan Q, Liu B L, Chang Z Y, et al. Foundry Technology, 2021, 42(2), 141 (in Chinese).
兰乔, 刘保良, 常治宇, 等. 铸造技术, 2021, 42(2), 141.
3 Ding Z G. Theoretical study of the dislocation sliding mechanisms of magnesium and its alloys. Ph, D. Thesis, Nanjing University of Science & Technology, China, 2017(in Chinese).
丁志刚. 镁及其合金中位错滑移机制的理论研究, 博士学位论文. 南京理工大学, 2017.
4 Wu R, Yan Y, Wang G, et al. International Materials Reviews, 2015, 60(2), 65.
5 Sun Y H, Wang R C, Peng C Q, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(1), 1.
6 Cai X, Qiao Y X, Xu D K, et al. Materials Reports, 2019, 33(S2), 374 (in Chinese).
蔡祥, 乔岩欣, 许道奎, 等. 材料导报, 2019, 33(S2), 374.
7 Feng K, Li D M, He C D, et al. Special Casting & Nonferrous Alloys, 2017, 37(2), 140 (in Chinese).
冯凯, 李丹明, 何成旦, 等. 特种铸造及有色合金, 2017, 37(2), 140.
8 Sheng D D, Shi Y J, Wang X X, et al. Light Alloy Fabrication Technology, 2021, 49(8), 8 (in Chinese).
圣冬冬, 施颖杰, 王茜茜, 等. 轻合金加工技术, 2021, 49(8), 8.
9 Hull D, Bacon D J. Introduction to dislocations, Elsevier, United Kingdom, 2011, pp. 78.
10 Peng X, Liu W C, Wu G H, et al. Journal of Materials Science & Technology, 2022, 99(4), 193.
11 Somekawa H, Egusa D, Abe E. Materials Science and Engineering A, 2020, 790, 139705.
12 Furui M, Kitamura H, Anada H, et al. Acta Materialia, 2007, 55(3), 1083.
13 Wang Z T. Light Alloy Fabrication Technology, 2016, 44(8), 1 (in Chinese).
王祝堂. 轻合金加工技术, 2016, 44(8), 1.
14 Li C Q, Liu X, Dong L J, et al. Materials Letters, 2021, 301, 130305.
15 Kudela J S, Švec P, Bajana O, et al. Kovove Materialy-Metallic Materials, 2016, 54, 483.
16 Wang S J, Wu G Q, Ling Z H, et al. Materials Science and Engineering A, 2009, 518(1-2), 158.
17 Gu X F, Furuhara T, Kiguchi T, et al. Scripta Materialia, 2020, 185, 25.
18 Li X, Mao P L, Wang F, et al. Materials Reports, 2019, 33(7), 1182 (in Chinese).
李响, 毛萍莉, 王峰, 等. 材料导报, 2019, 33(7), 1182.
19 Lu F M. Microstructure controls and performance improvements of Mg-RE-X alloys containing long-period stacking ordered (LPSO) precipitates. Ph. D. Thesis, Hohai University, China, 2017 (in Chinese).
卢富敏. 含长周期堆垛有序结构相Mg-RE-X合金的组织控制及高性能化研究. 博士学位论文, 河海大学, 2017.
20 Kawamura Y, Hayashi K, Inoue A, et al. Materials Transactions, 2001, 42, 1172.
21 Nie J F, Zhu Y M, Morton A J. Metallurgical and Materials Transactions A, 2014, 45(8), 3338.
22 Gao A, Li Q A, Chen X Y, et al. Journal of the Chinese Society of Rare Earths, 2024, 42(2), 204 (in Chinese).
高傲, 李全安, 陈晓亚, 等. 中国稀土学报, 2024, 42(2), 204.
23 Geshani M S, Kalayeh P M, Asadi A H, et al. Journal of Materials Research and Technology, 2023, 24, 4945.
24 Abe E, Ono A, Itoi T, et al. Philosophical Magazine Letters, 2011, 91(10), 690.
25 Hao J Q, Zhang J S, Xu C X, et al. Journal of Alloys and Compounds, 2018, 754, 283.
26 Luan S Y, Zhang L, Chen L J, et al. Materials Science and Engineering A, 2023, 873, 145022.
27 Zhang S, Yuan G Y, Lu C, et al. Journal of Alloys and Compounds, 2011, 509(8), 3515.
28 Liang J R, Cao F R. Special Casting & Nonferrous Alloys, 2021, 41(8), 932 (in Chinese).
梁晋瑞, 曹富荣. 特种铸造及有色合金, 2021, 41(8), 932.
29 Pu Z J, Chen D J, Zhang K, et al. Materials Reports, 2017, 31(7), 79 (in Chinese).
蒲治军, 陈东杰, 张奎, 等. 材料导报, 2017, 31(7), 79.
30 Luo S Q, Tang A T, Pan F S, et al. Transactions of Nonferrous Metals Society of China, 2011, 21(4), 795.
31 Wang Y, Rong W, Wu Y J, et al. Journal of Alloys and Compounds, 2017, 698, 1066.
32 Yang K, Zhang J S, Zong X M, et al. Materials Science and Engineering A, 2017, 705, 257.
33 Zhang L L, Zhang J S, Zhao R, et al. Corrosion Engineering, Science and Technology, 2021, 56(5), 427.
34 Zhou X J, Yao Y, Zhang J, et al. Materials Science and Engineering A, 2020, 794, 139934.
35 Liu W, Zhao Y H, Zhang Y T, et al. International Journal of Plasticity, 2023, 164, 103573.
36 Zhou J X, Luo X J, Yang H, et al. Journal of Materials Research and Technology, 2023, 24, 7258.
37 Kawano S, Iikubo S, Ohtani H. Computational Materials Science, 2020, 171, 109210.
38 Jin Q Q, Shao X H, Zheng S J, et al. Journal of Materials Science & Technology, 2021, 61(2), 114.
39 Gao H Y, Ikeda K, Morikawa T, et al. Materials Letters, 2015, 146, 30.
40 Mao P L, Xin Y, Han K, et al. Materials Science and Engineering A, 2020, 777, 139019.
41 Itakura M, Yamaguchi M, Egusa D, et al. Acta Materialia, 2021, 203, 116491.
42 Zhu C Y, Zhou L, Zheng J X, et al. Materials Letters, 2019, 235, 71.
43 Zhang J H, Zhang L, Leng Z, et al. Scripta Materialia, 2013, 68(9), 675.
44 Wang D, Liu S J, Wu R Z, et al. Journal of Alloys and Compounds, 2021, 881, 160663.
45 Liu X T. Effect of Li on microstructure and properties of Mg-4Y-2Er-2Zn alloy. Master’s Thesis, Harbin Engineering University, China, 2020 (in Chinese).
刘小婷. Li对Mg-4Y-2Er-2Zn合金微观组织和性能的影响. 硕士学位论文, 哈尔滨工程大学, 2020.
46 Zhang J, Dou Y C, Liu G B, et al. Computational Materials Science, 2013, 79, 564.
47 Chen J A. Research on Mg-Y-Zn-Li alloys with long period stacking ordered structures. Master’s Thesis, Taiyuan University of Technology, China, 2015 (in Chinese).
陈景爱. 长周期堆垛有序结构增强Mg-Y-Zn-Li合金的研究. 硕士学位论文, 太原理工大学, 2015.
48 Moitra A, Kim S G, Horstemeyer M F. Acta Materialia, 2014, 75, 106.
49 Wang J H, Jin Y, Wu R Z, et al. Journal of Alloys and Compounds, 2022, 927, 167027.
50 Wang C, Ma A B, Liu H, et al. Materials Reports, 2019, 33(19), 3298 (in Chinese).
王策, 马爱斌, 刘欢, 等. 材料导报, 2019, 33(19), 3298.
51 Liu W, Zhang J S, Wei L Y, et al. Materials Science and Engineering A, 2017, 681, 97.
52 Liu W, Su Y, Zhang Y T, et al. Journal of Magnesium and Alloys, 2023, 11(4), 1408.
53 Saito K, Kuzuya S, Nishijima M, et al. Materials Transactions, 2018, 59(8), 1259.
54 Brodie J, Ghazisaeidi M. Scripta Materialia, 2023, 224, 115075.
55 Yu S. The Research of microstructure and mechanical properties of Mg-Li-Zn-Y alloy. Master’s Thesis, Shenyang Aerospace University, China, 2017 (in Chinese).
于爽. Mg-Li-Zn-Y合金的组织与性能研究. 硕士学位论文, 沈阳航空航天大学, 2017.
56 Dong H W, Wu Y M, Wang L M. Ordnance Material Science and Engineering, 2009, 32(1), 88 (in Chinese).
董含武, 吴耀明, 王立民. 兵器材料科学与工程, 2009, 32(1), 88.
57 Zheng D F, Zhu Q C, Zeng X Q, et al. Materials Letters, 2022, 311, 131524.
58 Nakasuji Y, Somekawa H, Yuasa M, et al. Materials Letters, 2021, 292, 129625.
59 Li W P, Liu C X, Liu L L, et al. Intermetallics, 2021, 135, 107225.
60 Liu W, Zeng Z R, Hou H, et al. Materials Science and Engineering A, 2020, 798(4), 140121.
61 Liu W, Zhang J S, Xu C X, et al. Materials & Design, 2016, 110, 1.
62 Zhong F, Wang Y, Wu R Z, et al. Journal of Alloys and Compounds, 2020, 831, 154765.
63 Li C Q, Xu D K, Zhang Z R, et al. Journal of Materials Science & Technology, 2020, 57, 138.
64 Luan J Y, Wang B J, Xu D K, et al. Materials Reports, 2020, 34(S2), 1441 (in Chinese).
栾吉瑜, 王保杰, 许道奎, 等. 材料导报, 2020, 34(S2), 1441.
65 Mou Y, Ma Y L, Zhao X H, at al. The Chinese Journal of Nonferrous Metals, 2021, 31(5), 1203 (in Chinese).
牟宇, 麻彦龙, 赵旭晗, 等. 中国有色金属学报, 2021, 31(5), 1203.
66 Li C Q, Xu D K, Zeng Z R, et al. Materials & Design, 2017, 121, 430.
67 Li J G, Yang Y, Deng H J, et al. Journal of Alloys and Compounds, 2020, 823, 153893.
68 Zhang J X, Zhang J S, Han F Y, et al. Journal of Materials Science & Technology, 2020, 42, 130.
69 Xie J S, Zhang J H, Zhang Z, et al. Corrosion Science, 2022, 198, 110163.
70 Wang J H, Wu R Z, Feng J, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(05), 85.
71 Wang J H, Jin S Y, Wu R Z, et al. Journal of Materials Science: Materials in Electronics, 2020, 31, 17249.
72 Liu L Z, Chen X H, Pan F S. Journal of Magnesium and Alloys, 2021, 9(6), 1906.
73 Wang J H, Xu L, Wu R Z, et al. Journal of Alloys and Compounds, 2021, 882, 160524.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed