Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020251-8    https://doi.org/10.11896/cldb.23020251
  高分子与聚合物基复合材料 |
热处理对木材多尺度结构及力学性能影响的研究现状
王旭洁, 雒翠梅, 母军*, 漆楚生*
1 北京林业大学,木质材料科学与应用教育部重点实验室,北京 100083
2 北京林业大学材料科学与技术学院,木材科学与工程北京市重点实验室,北京 100083
Effects of Heat Treatment on Multiscale Structures and Mechanical Properties of Wood: a Review
WANG Xujie, LUO Cuimei, MU Jun*, QI Chusheng*
1 Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
2 Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
下载:  全 文 ( PDF ) ( 17968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热处理是一种改善木材尺寸稳定性的重要方法,同时会引起木材多尺度结构变化,进而影响热处理材的微宏观力学性能。本文从纳米、微米、毫米三个尺度总结了热处理对木材结构单元及力学性能的影响。在纳米尺度,热处理过程中木材半纤维素大量降解导致其作为界面偶联剂的基质特性被破坏;纤维素的羟基与半纤维素降解产生的有机酸发生酯化反应,其分子间氢键以及与半纤维素连接的氢键大量断裂,引起分子链断裂,削弱了半纤维素与纤维素之间的结合强度;多糖解聚引起木质素相对含量变化,木质素自缩聚反应以及与多糖降解产物发生的交联反应是热处理后细胞壁基质力学性能发生变化的重要因素。在微米尺度,热处理木材细胞壁胞间层出现裂缝,各细胞间产生分离,微纤丝的定向排列规律性下降、倾角增大,沿微纤丝长度方向断裂,进而引起细胞壁力学强度明显下降。在毫米尺度,早晚材的横切面上由方形、圆形变成椭圆形,其中早材开裂较多;径切面上管胞和导管的胞壁变形开裂,随着热处理程度增加,胞壁出现垂直轴向断裂、纹孔破坏、木射线开裂等现象,射线薄壁细胞被大量破坏,进而引起木材的载荷承载能力下降。本文可以为深入研究热处理对木材各尺度结构及力学性能的影响机制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭洁
雒翠梅
母军
漆楚生
关键词:  木材  热处理  多尺度结构  力学性能    
Abstract: Heat treatment is an important method to improve the dimensional stability of wood. At the same time, it will cause changes in the multi-scale structure of wood, and then affect the micro and macro mechanical properties of heat-treated wood. In this paper, the effects of heat treatment on multiscale structures and mechanical properties of wood were summarized from three scales of nanometer, micron, and millimeter. At the nanoscale, the degradation of wood hemicellulose during heat treatment resulted in the destruction of matrix properties as an interfacial coupling agent. The hydroxyl groups of cellulose were esterified with the organic acid produced by the degradation of hemicelluloses, and the intermolecular hydrogen bond and the hydrogen bond connected with hemicelluloses were broken in large numbers, which caused the break of mole-cular chain and weakened the bond strength between hemicelluloses and cellulose. The relative content of lignin changes due to polysaccharide depolymerization, and the self-polycondensation of lignin and the cross-linking reaction with polysaccharide degradation products were important factors for the mechanical properties of the cell wall matrix after heat treatment. At the micron scale, cracks appeared in the intercellular layer of the cell wall of heat-treated wood, and there was a separation between cells. The directional arrangement of the microfibril decreased regularly, the inclination increased, and the mechanical strength of the cell wall broke along the length direction of the microfibril. At the millimeter scale, the early wood and late wood changed from square and round to oval on the transverse section of heat-treated wood, and the early wood cracked more. The cell wall of tracheids and vessels was deformed and cracked on the diameter section. With the increase of heat treatment, the cell wall appeared to vertical axial fracture, pits damage, wood ray cracking, and other phenomena, and a large number of ray parenchyma cells were destroyed, which led to the decrease of the load carrying capacity of wood. The results of this review provide a reference for further study of the mechanism of heat treatment on the structure and mechanical properties of wood.
Key words:  wood    heat treatment    multiscale structure    mechanical property
发布日期:  2024-10-12
ZTFLH:  S781.7  
基金资助: 国家自然科学基金(31971589;31870536)
通讯作者:  *母军,通信作者,北京林业大学材料科学与技术学院教授、博士研究生导师。2004年在日本鸟取大学连合大学院获得博士学位。目前主要从事木质复合材料、木材热加工等方面的研究工作。近五年发表CSCD以上期刊学术论文40余篇,包括Journal of Cleaner Production、Holzforschung、Bioresource Technology、Industrial Crops & Products、Journal of Hazardous Materials、Waste Management等。 漆楚生,通信作者,北京林业大学材料科学与技术学院教授、博士研究生导师。2013年在西北农林科技大学获得博士学位后在北京林业大学材料科学与技术学院工作至今,2019—2020年在加拿大不列颠哥伦比亚大学进行访问研究。目前主要从事高性能木质复合材料、木结构建筑等方面的研究工作。近五年发表SCI学术论文30余篇,包括Journal of Cleaner Production、Industrial Crops & Products、Holzforschung、Wood Science and Technology等。mujun@bjfu.edu.cn;qichusheng@bjfu.edu.cn   
作者简介:  王旭洁,2018年6月于北京林业大学获得工学学士学位。现为北京林业大学材料科学与技术学院博士研究生,在母军教授和漆楚生教授的指导下进行研究。目前主要研究领域为木材热加工。发表SCI 学术论文1篇,申请专利1项。
引用本文:    
王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
WANG Xujie, LUO Cuimei, MU Jun, QI Chusheng. Effects of Heat Treatment on Multiscale Structures and Mechanical Properties of Wood: a Review. Materials Reports, 2024, 38(18): 23020251-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020251  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020251
1 Hill C, Altgen M, Rautkari L. Journal of Materials Science, 2021, 56(11), 6581.
2 Lee S H, Ashaari Z, Lum W C, et al. Construction and Building Materials, 2018, 181, 408.
3 Ali M R, Abdullah U H, Ashaari Z, et al. Polymers, 2021, 13(16), 2612.
4 Gu L B, Ding T, Jiang N. Journal of Forestry Engineering, 2019, 4(4), 1(in Chinese).
顾炼百, 丁涛, 江宁. 林业工程学报, 2019, 4(4), 1.
5 Candelier K, Dibdiakova J. Holzforschung, 2021, 75(3), 199.
6 Gao Y L, Xu K, Zhan T Y, et al. Materials Reports, 2022, 36(15), 212 (in Chinese).
高玉磊, 徐康, 詹天翼, 等. 材料导报, 2022, 36(15), 212.
7 Chen K W, Peng H, Jiang J L, et al. Chinese Journal of Wood Science and Technology, 2022, 36(2), 11(in Chinese).
陈凯文, 彭辉, 蒋佳荔, 等. 木材科学与技术, 2022, 36(2), 11.
8 Godinho D, Araujo S D, Quilho T, et al. Forests, 2021, 12(10), 1400.
9 Jirouš-Rajković V, Miklecic J. Advances in Materials Science and Engineering, 2019, 2019, 8621486.
10 Candelier K, Thevenon M F, Petrissans A, et al. Annals of Forest Science, 2016, 73(3), 571.
11 Xing D, Hu J P, Yao L H. Journal of Zhejiang A & F University, 2020, 37(4), 793(in Chinese).
邢东, 胡建鹏, 姚利宏. 浙江农林大学学报, 2020, 37(4), 793.
12 Wu Z X, Chen Y H, Huang J C, et al. World Forestry Research, 2019, 32(1), 59(in Chinese).
吴再兴, 陈玉和, 黄成建, 等. 世界林业研究, 2019, 32(1), 59.
13 Sandberg D, Kutnar A, Karlsson, et al. Wood modification technologies-principles, sustainability, and the need for innovation, CRC Press, Boca Raton, USA, 2021, pp.32.
14 Walker J C F. Primary wood processing, principles and practices(2nd edition), Springer, Dordrecht, 2006, pp.40.
15 Nishimura H, Kamiya A, Nagata T, et al. Scientific Reports, 2018, 8, 6538.
16 Hill C A S. Wood modification, chemical, thermal and other processes, John Wiley & Sons, Hoboken, 2006, pp.25.
17 Fahlen J, Salmen L. Journal of Materials Science, 2003, 38(1), 119.
18 Park Y, Jang S K, Park J H, et al. Journal of Wood Science, 2017, 63(6), 635.
19 Gaff M, Kacik F, Sandberg D, et al. Composite Structures, 2019, 220, 529.
20 Wang D, Lin L Y, Fu F. Cellulose, 2020, 27(8), 4161.
21 Borrega M, Ahvenainen P, Serimaa R, et al. Wood Science and Technology, 2015, 49(2), 403.
22 Zhao L Y, Jiang J H, Lu J X. Cold Regions Science and Technology, 2016, 126, 61.
23 Lin B J, Colon B, Chen W H, et al. Journal of Analytical and Applied Pyrolysis, 2018, 130, 8.
24 Yue K, Lu D, Song X S. Spectroscopy and Spectral Analysis, 2023, 43(3), 848(in Chinese).
岳孔, 陆栋, 宋学松. 光谱学与光谱分析, 2023, 43(3), 848.
25 Bayani S, Taghiyari H R, Papadopoulos A N. Polymers, 2019, 11(10), 1538.
26 Li T, Gu L B. Scientia Silvae Sinicae, 2009, 45(2), 92(in Chinese).
李涛, 顾炼百. 林业科学, 2009, 45(2), 92.
27 Xing D, Wang X Z, Wang S Q. Forests, 2021, 12(8), 968.
28 Alen R, Kotilainen R, Zaman A. Wood Science and Technology, 2002, 36, 163.
29 Yildiz S, Geaer E D, Tildiz U C. Building and Environment, 2006, 41(12), 1762.
30 Salmén L, Burgert I. Holzforschung, 2009, 63(2), 121.
31 Zhang N, Li S, Xiong L M, et al. Modelling and Simulation in Materials Science and Engineering, 2015, 23(8), 085010.
32 Long K Y, Wang D, Lin L Y, et al. Transactions of China Pulp and Paper, 2021, 36(1), 88(in Chinese).
龙克莹, 王东, 林兰英, 等. 中国造纸学报, 2021, 36(1), 88.
33 Hughes M, Hill C, Pfriem A. Holzforschung, 2015, 69(7), 851.
34 Wang C G, Jiang Z H, Fei B H, et al. Journal of Beijing Forestry University, 2012, 34(3), 107(in Chinese).
王传贵, 江泽慧, 费本华, 等. 北京林业大学学报, 2012, 34(3), 107.
35 Wang Q L, Xiao S L, Shi S Q. Bioresources, 2019, 14(3), 5288.
36 Berglund J, Mikkelsen D, Flanagan B M, et al. Nature Communications, 2021, 11(1), 4692.
37 Cabalova I, Kacik F, Lagana R, et al. Bioresources, 2018, 13(1), 157.
38 Salca E A, Hiziroglu S. Materials & Design, 2014, 62, 416.
39 Zhao H X, An Z. China Forest Products Industry, 2012, 39(3), 57(in Chinese).
赵红霞, 安珍. 林产工业, 2012, 39(3), 57.
40 Zhang J, Qi C S, Mu J. Journal of Beijing Forestry University, 2020, 42(10), 137(in Chinese).
张静, 漆楚生, 母军. 北京林业大学学报, 2020, 42(10), 137.
41 Zhang J. Physical and mechanical properties and thermal degradation characteristics of heat-treated Chinese fir. Master’s Thesis, Beijing Forestry University, China, 2021(in Chinese).
张静. 热处理杉木的物理力学性能与热降解特性研究. 硕士学位论文, 北京林业大学, 2021.
42 Zhou H Z. Multiscale modifications on dimensional stability of Popitlus cathayana by alkali lignin. Master’s Thesis, Beijing Forestry University, China, 2018(in Chinese).
周海珍. 碱木质素多尺度提升速生杨木尺寸稳定性研究. 硕士学位论文, 北京林业大学, 2018.
43 Ji Z, Ma J F, Zhang Z H, et al. Industrial Crops and Products, 2013, 47, 212.
44 Salmén L, Stevanic J S, Olsson A M. Holzforschung, 2016, 70(12), 1155.
45 Wang D. Wood fracture mechanisms under longitudinal tensile and bend loading. Ph.D. Thesis, Nanjing Forestry University, China, 2020(in Chinese).
王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究. 博士学位论文, 南京林业大学, 2020.
46 Brosse N, El Hage R, Chaouch M, et al. Polymer Degradation and Stability, 2010, 95(9), 1721.
47 Yin Y F, Berglund L, Salmén L. Biomacromolecules, 2011, 12(1), 194.
48 Tjeerdsma B F, Boonstra M, Pizzi A, et al. Holz als Roh und Werkstoff, 1998, 56(3), 149.
49 Umar I, Zaidon A, Lee S H, et al. Journal of Tropical Forest Science, 2016, 28(1), 88.
50 Gindl W, Gupta H S, Grünwald C. Canadian Journal of Botany, 2002, 80, 1029.
51 Wang Z, Sun B L, Chai Y B, et al. Journal of Forestry Engineering, 2022, 7(3), 67(in Chinese).
王喆, 孙柏玲, 柴宇博, 等. 林业工程学报, 2022, 7(3), 67.
52 Chundawat S P S, Beckham G T, Himmel M E, et al. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 121.
53 Liu Y X. Wood science, China Forestry Publishing House, China, 2012, pp.64(in Chinese).
刘一星. 木材学, 中国林业出版社, 2012, pp.64.
54 Muzamal M, Gamstedt E K, Rasmuson A. Wood Science and Technology, 2017, 51(3), 447.
55 Qin L Z, Lin L Y, Fu F, et al. Journal of Materials Science, 2017, 53(1), 549.
56 Gindl W, Gupta H S, Schöberl, et al. Applied Physics A, 2004, 79, 2069.
57 Brandt B, Zollfrank C, Franke O, et al. Acta Biomaterialia, 2010, 6(11), 4345.
58 Zauer M, Meissner F, Plagge R, Wagenfuhr A. Holzforschung, 2016, 70(2), 137.
59 Barnett J R, Bonham V A. Biological Reviews, 2004, 79(2), 461.
60 Donaldson L, Xu P. Trees-Structure and Function, 2005, 19(6), 644.
61 Qing H, Mishnaevsky L. Mechanics of Materials, 2009, 41(9), 1034.
62 Qing H, Mishnaevsky L. International Journal of Solids and Structures, 2010, 47(9), 1253.
63 Reza M, Bertinetto C, Kesari K K, et al. Scientific Reports, 2019, 9, 3869.
64 Wang N L, Liu W Y, Peng Y. Journal of Materials Science, 2013, 48(14), 5071.
65 Wang N L, Liu W Y, Lai J P. Journal of Materials Science, 2014, 49(5), 1984.
66 Biziks V, Andersons B, Belkova L, et al. Wood Science and Technology, 2013, 47(4), 717.
67 Xing D, Li J, Wang X Z, et al. Industrial Crops and Products, 2016, 87, 142.
68 Kim J S, Gao J, Terziev N, et al. Holzforschung, 2015, 69(5), 603.
69 Chen S. Optimization of strength representation models of thermally modified wood using color parameters and wood cell wall structure response. Master’s Thesis, Beijing Forestry University, China, 2022(in Chinese).
陈爽. 热处理木材颜色对其强度表征模型优化及细胞壁构造响应. 硕士学位论文, 北京林业大学, 2022.
70 Bertaud F, Nolmbom B. Wood Science and Technology, 2004, 38(4), 245.
71 Büyüksari U, As N, Dündar T. Bioresources, 2017, 12(2), 4004.
72 Büyüksari U, As N, Dündar T. Bioresources, 2018, 13(1), 836.
73 Prošek Z, Králík V, Topi J, et al. Acta Polytechnica, 2015, 55(1), 39.
74 Yang Y, Qiu J, Dong C L, et al. Journal of Northwest Forestry University, 2010, 25(4), 181(in Chinese).
杨燕, 邱坚, 董春雷, 等. 西北林学院学报, 2010, 25(4), 181.
75 Jiang J H. Studies on the mechanism and properties of superheated steam heat-treated oak wood. Ph.D. Thesis, Chinese Academy of Forestry, China, 2013(in Chinese).
江京辉. 过热蒸汽处理柞木性质变化规律及机理研究. 博士学位论文, 中国林业科学研究院, 2013.
76 Boonstra M J, Rijsdijk J F, Sander C, et al. Maderas:Ciencia Y Tecnología, 2006, 8(3), 193.
77 Awoyemi L, Jones I P. Wood Science and Technology, 2011, 45(2), 261.
78 Kekkonen P M, Telkki V V, Jokisaari J. Journal of Physical Chemistry C, 2010, 114(43), 18693.
79 Boonstra M J, Rijsdijk J F, Sander C, et al. Maderas: Ciencia Y Tecnología, 2006, 8(3), 209.
80 Feng X H, Chen J Y, Yu S X, et al. European Journal of Wood and Wood Products, 2022, 80(4), 933.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed