Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23030288-9    https://doi.org/10.11896/cldb.23030288
  金属与金属基复合材料 |
冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响
王慧鹏1, 李鹏1, 王喜茂1, 郭伟玲2,*, 马国政2,*, 王海斗2,3
1 江西理工大学机电工程学院,江西 赣州 341000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Effect of Cold Spraying Temperature on the Microstructure and Tribological Properties of Cu-Ti3AlC2 Composite Coatings
WANG Huipeng1, LI Peng1, WANG Ximao1, GUO Weiling2,*, MA Guozheng2,*, WANG Haidou2,3
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 National Key Laboratory of Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
3 National Engineering Research Centerfor Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
下载:  全 文 ( PDF ) ( 40961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善铜合金运动部件表面的摩擦学性能,采用冷喷涂技术在铜合金基体上制备了Cu-Ti3AlC2 复合涂层,并探究了喷涂温度对涂层微观组织及性能的影响。使用扫描电镜(SEM)、X射线衍射仪(XRD)对涂层表面与截面微观组织进行了表征,使用电子万能试验机、纳米压痕试验仪、往复式摩擦试验机分别测试了涂层的结合强度、显微硬度和摩擦学性能。研究表明,随着喷涂温度从600 ℃ 升高至800 ℃,Cu-Ti3AlC2 复合涂层内部颗粒的变形量不断增大,颗粒间结合状态明显改善,结合强度提升约4倍,孔隙率降低23%,硬度增加71%,涂层磨损率降低53%。在800 ℃制备的Cu-Ti3AlC2复合涂层表现出最优的摩擦磨损性能,对其磨损机制进行了具体分析。结果表明,适当升高喷涂温度可有效提高涂层的致密度、力学性能和耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王慧鹏
李鹏
王喜茂
郭伟玲
马国政
王海斗
关键词:  冷喷涂  铜基陶瓷复合涂层  微观结构  力学性能  摩擦学性能    
Abstract: To improve the tribological properties of copper alloy moving part surfaces, Cu-Ti3AlC2 composite coatings were prepared on copper alloy substrates by cold spraying technique, and the effect of spraying temperature on the microstructure and properties of the coatings was investigated. The surface and cross-sectional microstructures of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffractometer (XRD), and the bond strength, microhardness and tribological properties of the coatings were tested using an electronic universal testing machine, a nanoindentation tester and a reciprocating friction tester. It was found that as the spraying temperature increased from 600 ℃ to 800 ℃, the deformation of particles inside the Cu-Ti3AlC2 composite coating increased, the interparticle bonding state improved significantly, the bond strength increased by about 4 times, the porosity decreased by 23%, the hardness increased by 71%, and the coating wear rate decreased by 53%. The Cu-Ti3AlC2 composite coating prepared at 800 ℃ showed the optimal frictional wear performance, and the wear mechanism was specifically analyzed. The results showed that the denseness, mechanical properties and wear resistance of the coatings could be effectively improved by appropriately increasing the spraying temperature.
Key words:  cold spraying    copper-based ceramic composite coating    microstructure    mechanical property    tribological property
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG174.442  
基金资助: 国家自然科学基金(52005511;52122508;52130509);十四五预研项目重点项目(ZD-302);2022年江西省研究生创新专项资金项目(YC2022-S672)
通讯作者:  * 郭伟玲,博士,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。目前主要从事表面工程、冷喷涂技术等方面的研究工作。发表学术论文30余篇,主持项目3项,参与项目10余项,获授权国家发明专利10余项,参编专著3部。guoweiling_426@163.com
马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2016年入选中国科协青年人才托举工程,2021年获得国家自然科学基金优秀青年科学基金。目前主要从事装备极端工况摩擦学和表面强化改性涂层等方面的研究工作。发表论文100余篇,包括Nano Letters、ACS Applied Materials & Interfaces、Journal of Materials Science & Techonlogy等.magz0929@163.com   
作者简介:  王慧鹏,博士,江西理工大学机电工程学院副教授、硕士研究生导师,目前主要从事表面工程与再制造技术等方面的研究工作。发表论文50余篇,其中SCI、EI收录10余篇。
引用本文:    
王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
WANG Huipeng, LI Peng, WANG Ximao, GUO Weiling, MA Guozheng, WANG Haidou. Effect of Cold Spraying Temperature on the Microstructure and Tribological Properties of Cu-Ti3AlC2 Composite Coatings. Materials Reports, 2024, 38(15): 23030288-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030288  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23030288
1 Xiao J K, Li T T, Chen J, et al. Materials Reports, 2023, 37(23), 149 (in Chinese).
肖金坤, 李天天, 陈娟, 等. 材料导报, 2023, 37(23), 149.
2 Wang H, Li P, Guo W, et al. Coatings, 2023, 13(3), 479.
3 Liu Y N, Wang Y P, Zhu R F, et al. Materials for Mechanical Engineering, 2021, 45(1), 1 (in Chinese).
刘宇宁, 王云鹏, 祝儒飞, 等. 机械工程材料, 2021, 45(1), 1.
4 Guo M X, Wang M P, Cao L F, et al. Materials Characterization, 2007, 58(10), 928.
5 Guo M, Wang M, Kun S, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(2), 333.
6 Wang X M, Zhao Y C, Guo W L, et al. Materials Reports, 2023, 37(24), 121 (in Chinese).
王喜茂, 赵运才, 郭伟玲, 等. 材料导报, 2023, 37(24), 121.
7 Chen W Y, Tan H, Cheng J, et al. Materials Reports, 2022, 36(7), 58 (in Chinese).
陈文元, 谈辉, 程军, 等. 材料导报, 2022, 36(7), 58.
8 Assadi H, Kreye H, Gartner F, et al. Acta Materialia, 2016, 116, 382.
9 Suo X K, Yin S, Planche M P, et al. Surface & Coatings Technology, 2015, 268, 90.
10 Goldbaum D, Poirier D, Irissou E, et al. Modern cold spray, Springer, US, 2015, pp. 403.
11 Triantou K I, Pantelis D I, Guipont V, et al. Wear, 2015, 336, 96.
12 Deng N, Tang J R, Xiong T Y, et al. Surface & Coatings Technology, 2019, 368, 8.
13 Shikalov V, Filippov A A, Vidyuk T M. Materials Physics & Mechanics, 2021, 47(5), 787.
14 Huang C J, Wu H J, Xie Y C, et al. Surface and Coatings Technology, 2019, 371, 211.
15 Chen Q, Yu M, Cao K, et al. Surface and Coatings Technology, 2022, 434, 128135.
16 Yu T Y, Ma G Z, Guo W L, et al. Materials Reports, 2022, 36(7), 109 (in Chinese).
于天阳, 马国政, 郭伟玲, 等. 材料导报, 2022, 36(7), 109.
17 Chen Q, Yu M, Cao K, et al. Surface and Coatings Technology, 2022, 434, 128135.
18 Koivuluoto H, Coleman A, Murray K, et al. Journal of Thermal Spray Technology, 2012, 21(5), 1065.
19 Jin L, Peng H, Li W Y, et al. Aerospace Materials & Technology, 2018, 48(1), 62 (in Chinese).
靳磊, 彭徽, 李文亚, 等. 宇航材料工艺, 2018, 48(1), 62.
20 Yin S, Suo X, Liao H, et al. Surface Engineering, 2014, 30(6), 443.
21 Lee J, Shin S, Kim H J, et al. Applied Surface Science, 2007, 253(7), 3512.
22 Wu Z R, Hu Y J, Dai J M, et al. Surface Technology, 2020, 49(1), 318 (in Chinese).
吴增荣, 胡永俊, 代明江, 等. 表面技术, 2020, 49(1), 318.
23 Diao P, Wang F, Chu X, et al. Surface and Coatings Technology, 2022, 451, 129074.
24 Cao K. Study on thermal conductivity and wear resistance of cold sprayed Al-based Cu/ceramic phase composite coating. Master’s Thesis, Southwest Jiaotong University, China, 2011 (in Chinese).
曹开. 冷喷涂铝基Cu/陶瓷相复合涂层导热及耐磨性能研究. 硕士学位论文, 西南交通大学, 2021.
25 Zhang T, Cheng B, Li W S, et al. Surface Technology, 2021, 50(7), 203 (in Chinese).
张涛, 成波, 李文生 等. 表面技术, 2021, 50(7), 203.
26 Zhang L L, Huang J B, Diao P Y, et al. Surface Technology, 2023, 52(3), 172 (in Chinese).
张龙龙, 黄继波, 刁鹏源, 等. 表面技术, 2023, 52(3), 172.
27 Li Y, Dong T, Fu B, et al. Journal of Materials Engineering and Performance, 2021, 30(12), 9067.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[12] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[13] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[14] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed