Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010202-10    
  金属与金属基复合材料 |
纳米金属材料原位氧化电子显微学研究进展
裴星飞, 王立华, 陈艳辉
北京工业大学材料与制造学部,固体微结构与性能研究所,北京 100124
Research Progress on In-situ Oxidation by Electron Microscopy of Nanometallic Materials
PEI Xingfei, WANG Lihua, CHEN Yanhui
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 23957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统块体金属材料相比,纳米金属材料具有更加优异的物理、化学性能,有着广泛的应用前景。然而,金属纳米材料在服役过程中易氧化,从而严重影响纳米器件的性能,加速器件老化,造成不可挽回的损失。理清金属材料氧化微观过程,提高材料的抗氧化能力是国家重大工程中的重大问题,也是科学家和研究人员研究的重点。过去传统的氧化机制研究大多局限于微米尺度多层氧化膜的形成机制、形成序列、形成原因等因素,缺少对金属材料原位原子尺度动态氧化机制的研究。因此,研究金属纳米材料纳米尺度下的氧化过程,建立一个清晰的原子尺度氧化体系对提高材料抗氧化能力以及设计抗氧化材料的设计和优化具有重要意义。先进原位技术的出现使研究者能够从原子尺度揭示纳米金属的氧化机制,从物理本质解析氧化过程,从而解决困扰人类的基础物理问题。本文首先论述了金属氧化的反应机理,然后对不同金属纳米材料的原位氧化研究进展进行系统的总结与分析,最后,对原位氧化技术未来的应用及需要解决的问题进行了简要的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴星飞
王立华
陈艳辉
关键词:  金属  氧化  原位  原子尺度    
Abstract: Nanometallic materials have a wide range of application prospects with superior physical and chemical properties compared to traditional bulk metallic materials. Nanomaterials are susceptible to oxidation during service, which can seriously affect the performance of nanodevices and accelerate the aging of devices, resulting in irreversible damage. Figuring out the microscopic process of oxidation of metallic materials and improving the oxidation resistance of materials are major problems in national major projects and the focus of research by scientists and resear-chers. In the past, most of the traditional research on oxidation mechanism was limited to the study of the formation mechanism, formation sequence, formation causes and other factors of multilayer oxidation film at the micron scale, and the study of dynamic oxidation mechanism of metallic materials at the in-situ atomic scale was lacking. Therefore, it is important to study the oxidation process of metal nanomaterials at the nanoscale and to establish a clear atomic-scale oxidation system to improve the antioxidant capacity of materials as well as to design and optimize the design of antioxidant materials. The emergence of advanced in-situ techniques enables researchers to reveal the oxidation mechanism of nano-metals from the atomic scale and resolve the oxidation process from the physical nature, thus solving the fundamental physical problems that have plagued mankind. In this paper, we firstly discuss the reaction mechanism of metal oxidation, then we systematically summarize and analyze the research progress and results obtained in recent years by using in-situ technology for in-situ oxidation experiments, then we systematically summarize and analyze the research progress of in-situ oxidation of different metal nanomaterials, and finally, we make a brief outlook on the future applications of in-situ oxidation technology and the problems that need to be solved.
Key words:  metal    oxidation    in-situ    atomic scale
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51771004)
通讯作者:  yhchen@bjut.edu.cn   
作者简介:  裴星飞,2019年6月毕业于石家庄铁道大学,获得工学学士学位。现为北京工业大学材料与制造学部固体微结构与性能研究所硕士研究生。目前主要研究领域为金铜合金氧化。
陈艳辉,北京工业大学材料与制造学部固体微结构与性能研究所副研究员、硕士研究生导师,2008年获北京工业大学凝聚态物理学博士学位。主要从事合金抗腐蚀的研究,已发表SCI论文50余篇。
引用本文:    
裴星飞, 王立华, 陈艳辉. 纳米金属材料原位氧化电子显微学研究进展[J]. 材料导报, 2022, 36(Z1): 22010202-10.
PEI Xingfei, WANG Lihua, CHEN Yanhui. Research Progress on In-situ Oxidation by Electron Microscopy of Nanometallic Materials. Materials Reports, 2022, 36(Z1): 22010202-10.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010202
1 Prescott R, Graham M J. Oxidation of Metals, 1992, 38(3-4), 233.
2 Erhart H, Wang R, Rapp R A. Oxidation Of Metals, 1984, 21(1-2), 81.
3 孙秋霞.材料腐蚀与防护, 冶金工业出版社, 2004.
4 刘培生.钴基合金铝化物涂层的高温氧化行为,冶金工业出版社, 2008.
5 Hansen T W. Switzerland: Springer International Publishing, 2016,Chapter 10,281.
6 Sharma R. Journal of Materials Research, 2005, 20, 1695.
7 Yoshida H, Kuwauchi Y, Jinschek J R, et al. Science, 2012, 335(6066), 317.
8 Luo L, Zou L, Schreiber D K, et al. Scripta Materialia, 2016, 114, 129.
9 Lawless K R. The oxidation of metals. Reports On Progress In Physics, 1974, 37, 231.
10 Stranski I N, Krastanow L. Naturwiss KI., Abt. B, 1938, 2, 797.
11 李铁藩.金属高温氧化和热腐蚀, 化学工业出版社, 2003, pp.3.
12 Birks N, Meier G H, Pettit F S. Cambridge University Press, 2006, 2013(1), 354.
13 Young D J.In: High temperature oxidation and corrosion of metals. Else-vier, Netherlands, 2008.
14 Cabrera N, Mott N F. Reports On Progress In Physics, 1949, 12(1), 163.
15 Dunn J S. Proceedings of the Royal Society of London, 1926, 111(757), 203.
16 Wagner C Z. Zeitschrift fur Physikalische Chemie-international Journal of Research In Physical Chemistry & Chemical Physics, 1933, 21, 25.
17 Wang C M, Baer D R, Thomas L E, et al. Journal of Applied Physics, 2005, 98, 094308.
18 Zhang Z J, Fu X Q, Mao M M, et al. Nano Research, 2016, 9(9), 2796.
19 King A, Johnson G, Engelberg D, et al. Science, 2008, 321(5887), 382.
20 Over H, Seitsonen A P. Science, 2002, 297(5589), 2003.
21 Thürmer K, Williams E, Reutt-Robey J. Science, 2002, 297(5589), 2033.
22 Whittle D P, Wood G C, Evans D J, et al. Acta Metallurgica, 1967, 15(11), 1747.
23 Wulf G L, McGirr M B, Wallwork G R. Corrosion Science, 1969, 9(10), 739.
24 Bobeth M, Bischoff E, Schumann E, et al. Corrosion Science, 1995, 37(4), 657.
25 Fromhold A T, Cook E L. Physical Review Letters, 1967, 163, 650.
26 Pettit F S, Meier G H, Birks N. Introduction to the high temperature oxidation of metals, 2 ed. Cambridge University Press, Cambridge, 2006.
27 Jin-Phillipp NY, Nolte P, Stierle A, et al. Surface Science, 2009, 603(16), 2551.
28 Jeangros Q, Hansen T W, Wagner J B, et al. Acta Materialia, 2014, 67, 362.
29 Fournier L, Delafosse D, Magnin T. Materials Science and Engineering A, 2001, 316, 166.
30 Osinkolu G A, Onofrio G, Marchionni M. Materials Science and Enginee-ring, 2003, 356A, 425.
31 Bungaro C, Noguera C, Ballone P, et al. Physical Review Letters, 1997, 79, 4433.
32 SchrCoder E, Fasel R, Kiejna A. Physical Review B, 2004, 69, 193405.
33 Francis M F, Taylor C D. Physical Review B, 2013, 87, 075450.
34 Sharma R. Journal of Materials Research, 2005, 20(7), 1695.
35 Wang C M, Schreibe D K, Olszta M J, et al. ACS Applied Materials & Interfaces, 2015, 7, 17272.
36 Pratt A, Lari L, Hovorka O, et al. Nature Materials, 2014, 13(1), 26.
37 Zhang D J, Jin C H, Tian H, et al. Nanoscale, 2017, 9(19), 6327.
38 Zhu Q, Pan Z, Zhao Z, et al. Nature Communications. 2021, 12(1), 558.
39 Zhou G W, Luo L L, Li L, et al. Physical Review Letters, 2012, 109(23), 235502.
40 Li L, Luo L L, Ciston J, et al. Physical Review Letters, 2014, 113(13), 136104.
41 李荣华, 黄继华, 殷声.材料导报, 2002(8), 17.
42 黄光胜, 范永革, 汤爱涛,等.材料导报, 2002(4), 38.
43 Kooi B J, Palasantzas G, Hosson J T M D. Applied Physics Letters, 2006, 89(16), 161914.
44 Zheng H, Wu S J, Sheng H P, et al. Applied Physics Letters, 2014, 104(14), 141906.
45 Cao F, Zheng H, Jia S f, et al. The Journal of Physical Chemistry C, 2016, 120, 26873.
46 Gao J, Yan J, Zhao B, et al. Nano Research, 2019, 13(9), 183.
47 Wang C M, Genc A, Cheng H K, et al. Scientific Reports, 2014, 4, 3683.
48 Wang C M, Schreiber D K, Olszta M J, et al. ACS Applied Materials & Interfaces, 2015, 7(31), 17272.
49 Xiang X, Nie J L, Sun K, et al. Nanoscale, 2014, 6(21), 12898.
50 Lewis E A, Slater T J A, Prestat E, et al. Nanoscale, 2014, 6, 13598.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[3] 吴学志, 尹邦跃. 特种反应堆用亚化学计量UO2-x燃料O/U比调控与机理研究[J]. 材料导报, 2022, 36(Z1): 21110113-4.
[4] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[5] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[6] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[7] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[8] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[9] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[10] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[11] 黄飞, 马亿珠, 勾密峰. 固化垃圾焚烧飞灰的矿渣用作矿物掺合料及其安全性分析[J]. 材料导报, 2022, 36(Z1): 21100081-5.
[12] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[13] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[14] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[15] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed