Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 564-569    
  高分子与聚合物基复合材料 |
铺层方式对碳纤维预浸料不同温度下压缩特性的影响
戴宗妙1, 彭雪峰1, 刘喜宗2, 吴恒2
1 中国船舶重工集团公司第七一三研究所,郑州 450015
2 巩义市泛锐熠辉复合材料有限公司,郑州 451261
Effect of Laying Sequences on Consolidation Behavior of Uncured Carbon Fiber Prepregs Under Processing Temperatures
DAI Zongmiao1, PENG Xuefeng1, LIU Xizong2,WU Heng2
1 Seventh Thirteen Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, China
2 Gongyi Van-Research Innovation Composite Materials Co., Ltd, Zhengzhou 451261, China
下载:  全 文 ( PDF ) ( 4190KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用预浸料制备复合材料制件的过程中存在对预浸料的压缩,包括铺放过程、固化前压实过程以及固化过程;预浸料压缩过程受树脂流动机理、孔隙生长与消除及工艺限制等因素的影响;探讨预浸料的压缩特性可以为其成型工艺优化提供理论支持。本工作研究了铺层方式对预浸料在不同温度下的压缩性能的影响,探讨压缩过程中树脂的流动机制,对压缩前后预浸料铺层内部的微观结构进行分析。结果表明,对于相同预浸料层数的预成型体,单向预成型体的厚度均为最小,准各向同性铺层次之,正交预成型体厚度均为最大;其次,在相同压力下,单向预成型体的厚度变化率最小,准各向同性铺层次之,正交预成型体的厚度变化率最大;这是由于单向铺层间束缚小,正交铺层相邻层间纤维方向不一致,准各向同性铺层兼具此两种压缩特性,包括部分相邻层纤维同向和部分相邻纤维层角度相差45°。加热温度高于70 ℃后单向铺层厚度变化很小,这是由于预成型体已经到达厚度压缩极限,厚度方向基本不再变化,预成型体宽度以及纤维体积分数也趋于平稳。初始状态下,预浸料间纤维松散,并自由排列,在受压时剪切作用力将导致层间挤压,树脂被压挤,纤维发生滑移;在高温时伴有树脂溢出现象,这是由于此时树脂粘度低并明显流动,树脂渗透流动主导,预成型体已经达到最高纤维体积分数;此时增加加压压力,可提高树脂压力从而抑制孔隙生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴宗妙
彭雪峰
刘喜宗
吴恒
关键词:  预浸料  压缩特性  复合材料  微观结构  黏度    
Abstract: Composite manufacturing includes laying process, compaction process before curing, and curing process. Factors affect prepreg stack compression process include resin flow mechanism, void growth and elimination, and process limits. Analysis of prepreg stack compression behaviors can provide theoretical support for cure cycle optimization. Prepregs consolidation occurs in all steps of composite manufacturing, including prepregs deposition, various temperatures debulking and consolidation during curing step. Prepreg consolidation process is affected by factors, such as resin flow mechanism, void growth and elimination and process limitations. The characterization of prerpreg consolidation behavior can provide theoretical support for curing process optimization. This paper presents consolidation behavior of uncured carbon fiber prepregs, discussing the influence of laying sequences, as is essential for composite manufacturing optimization. The drive for this study is to obtain further understanding of flow mechanism throughout the prepregs consolidation steps. The results showed that the thickness of unidirectional prepreg stack was minimum, followed by quasi-isotropic stack, when compared with cross-ply prepreg stack with the same number of layers. Thickness reduction ratio was also minimum for unidirectional prepreg stack under the same pressure condition, followed by quasi-isotropic stack, which of cross-ply prepreg stack was the largest. Unidirectional stack has adjacent layers of same fiber orientation, while cross-ply stack has adjacent layers of 90°different angle fiber orientation. Quasi-isotropic stack has both of the behaviors, including adjacent layers of same fiber orientation and 45°different angle fiber orientation. When ramped to 70 ℃, the thickness reduction became negligible, because of the compaction limit, which means the prepreg stack had already reached the maximum fiber volume fraction. The width and fiber volume fraction variation exhibited the same trend above 70 ℃. At initial state, the fibers showed a relax condition. However, fibers began to slip under shear force, and nesting occurred, especially in unidirectional laying sequence. This contributed to the resin percolation flow dominated at relative elevated temperature, until reach the maximum fiber volume fraction. Increasing the pressure at this time can increase the resin pressure to suppress pore growth.
Key words:  prepregs    consolidation behavior    composites    microstructures    viscosity
                    发布日期:  2021-12-09
ZTFLH:  V258+.3  
基金资助: 国家重点研发计划资助(2017YFB1300500)
通讯作者:  pengxuefeng425@163.com   
作者简介:  戴宗妙,1996年毕业于西安交通大学,硕士研究生,现任职于中国船舶集团公司第七一三研究所副总工程师、研究员。一直从事大船特种装备技术研究和研发工作。2015年享受河南省政府特殊津贴,先后获得国家科技进步奖二等奖1项、国防科技进步一等奖2项,集团公司二等奖1项、三等奖1项,获授权专利15项。
彭雪锋,2017年毕业于北京科技大学,博士研究生,现任职于中国船舶集团公司第七一三研究所工程师,从事大船特种装备机器人研究,近五年发表SCI/EI论文10篇,申请发明专利9项。
引用本文:    
戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
DAI Zongmiao, PENG Xuefeng, LIU Xizong,WU Heng. Effect of Laying Sequences on Consolidation Behavior of Uncured Carbon Fiber Prepregs Under Processing Temperatures. Materials Reports, 2021, 35(z2): 564-569.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/564
1 顾轶卓,李敏,李艳霞,等. 航空学报, 2015, 36(8),2773.
2 王军照.今日制造与升级, 2020, 128(8), 50.
3 Campbell F C. Manufacturing technology for aerospace structural mate-rials, Magnesium and Beryllium, 2006,pp.93.
4 曾艳明, 王海云, 王敏,等. 新技术新工艺, 2017, (1),82.
5 孙建明, 温磊, 李斌太, 等. 中国胶粘剂, 2017, 26(12), 17.
6 张建宝, 赵文宇, 王俊锋,等. 航空制造技术, 2014, 460(16),80.
7 曹忠亮, 富宏亚, 付云忠, 等. 材料导报:综述篇, 2019,33(3),894.
8 Engmann J, Colin S, Adam S. Journal of Non-Newtonian Fluid Mecha-nics, 2005, 132(1-3),1.
9 董安琪, 肇研, 赵新青. 复合材料学报, 2018, 35(5),1095.
10 都涛. 基于碳纤维预浸料铺放的工艺参数分析与试验研究. 浙江大学, 2018.
11 王新龙, 刘明. 能源化工, 2016, 37(4),28.
12 Shuler S F, Advani S G. Journal of Non-Newtonian Fluid Mechanics, 1996, 65(1),47.
13 Servais Colin, André Luciani, Månson J A E. Journal of Non-Newtonian Fluid Mechanics, 2002, 104(2-3),165.
14 Hubert P, Poursartip A. Composites Part A, 2001, 32(2),179.
15 乌云其其格,付宇彤,高旭豪,等. 航空制造技术, 2020, 63(22),5.
16 Gutowski T G, Dillon G.Journal of Composite Materials, 1992,26 (16),2330.
17 孙子恒,王继辉,倪爱清,等. 复合材料科学与工程, 2020, No.322(11),108.
18 Buntain M J, Bickerton S. Composites Part A: Applied Science and Manufacturing, 2007, 38(7),1729.
19 Hubert P, Poursartip A. Journal of Composite Materials, 2001, 35(1),2.
20 Hélénon F, Lukaszewicz H J A, Ivanov D, et al. In: Proceedings of the 19th International Conference on Composite Materials. 2013.
21 Lukaszewicz H J A, Potter K D. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2011, 226(2), 193.
22 Lukaszewicz H J A, Carwyn W, Potter K D. Composites Part B: Engineering, 2012,43(3), 997.
23 Lukaszewicz H J A, Potter K D. Composites Part A Applied Science & Manufacturing, 2011, 42(3),283.
24 Hall C, Ward C, Ivanov D S, et al. The compaction of uncured toughened prepreg laminates in relation to automated forming.Proceedings of 15th European Conference on Composite Materials, Venice. 2012.
25 Belnoue P H, Nixon-pearson O J, Ivanov D, et al. Mechanics of Mate-rials, 2016, 97,118.
[1] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[2] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[3] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[4] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[5] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[6] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[7] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[8] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[9] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[10] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[11] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[12] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[13] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[14] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[15] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed