Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 558-563    
  高分子与聚合物基复合材料 |
碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展
罗锐祺, 刘勇琼, 廖英强, 周剑
西安航天复合材料研究所,西安 710025
Research Progress on the Influencing Factors of Mechanical Properties of Carbon Fiber Reinforced Epoxy Resin Composites
LUO Ruiqi, LIU Yongqiong, LIAO Yingqiang, ZHOU Jian
Xi'an Institute of Aerospace Composites, Xi'an 710025,China
下载:  全 文 ( PDF ) ( 2763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维增强树脂基复合材料虽然力学性能优良,但因其制作工艺复杂等原因,存在较多影响力学性能的相关因素。将所有针对碳纤维增强复合材料力学性能的影响因素划分为复合材料结构与成分、复合材料制备工艺、复合材料湿热服役环境三个方面,并对影响碳纤维增强复合材料的方面,分别阐述了每一方面对碳纤维增强复合材料力学性能的影响原理、具体的力学性能,且提出了提升碳纤维复合材料力学性能的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗锐祺
刘勇琼
廖英强
周剑
关键词:  碳纤维  复合材料  力学性能    
Abstract: Carbon fiber reinforced resin matrix composites have excellent mechanical properties. Due to the complicated manufacturing process, there are many related factors affecting mechanical properties. All the influence factors of carbon fiber reinforced composite materials mechanics performance are divided into three aspects:composite material composition and structure, composite materials preparation technology,the preparation process of composite material served hot and humid environment. The principle and specific mechanical properties on the mechanical prope-rties of each aspect of influencing carbon fiber reinforced composite materials are expounded respectively. And the methods to improve the mechanical properties of carbon fiber reinforced composites are put forward.
Key words:  carbon fiber    composites    mechanical property
                    发布日期:  2021-12-09
ZTFLH:  TB332  
通讯作者:  1299903713@qq.com   
作者简介:  罗锐祺,2019年6月毕业于山东大学,获得工学学士学位。现为西安航天复合材料研究所硕士研究生,在廖英强研究员的指导下进行研究。目前主要研究领域为复合材料力学性能。
引用本文:    
罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
LUO Ruiqi, LIU Yongqiong, LIAO Yingqiang, ZHOU Jian. Research Progress on the Influencing Factors of Mechanical Properties of Carbon Fiber Reinforced Epoxy Resin Composites. Materials Reports, 2021, 35(z2): 558-563.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/558
1 岳进. 纳米颗粒增韧碳纤维/CBT复合材料层合板力学性能研究. 硕士学位论文, 哈尔滨工程大学, 2015.
2 Muralidhara B, Babu S, Suresha B.Materials Today: Proceedings, 2020, 22(4), 1755.
3 Muralidhara B, Babu S, Suresha B.Materials Today: Proceedings, 2020, 27(3), 2022.
4 益小苏, 许亚洪, 程群峰, 等. 材料研究学报, 2008, 22(4), 337.
5 Fu Y, Zhou H, Zhou L. Composites Science and Technology, 2021, 207, 108711.
6 Feng P, Song G, Li X, et al. Journal of Colloid and Interface Science, 2021, 583, 13.
7 Gude M R, Prolongo S G, Urena A.Surface and Coatings Technology, 2012, 207, 602.
8 Brunbauer J, Stadler H, Pinter G.International Journal of Fatigue, 2015, 70, 85.
9 张阿樱, 张东兴. 哈尔滨工程大学学报, 2013, 34(3), 389.
10 陈霏. 孔隙影响碳纤维复合材料层合板力学性能研究. 硕士学位论文, 大连理工大学, 2016.
11 Hernandez S, Sket F, Gonzalez C, et al. Composites Science & Technology, 2013, 85, 73.
12 施旗, 关洪涛, 李秋岑, 等. 玻璃纤维, 2020, 294(4), 5.
13 Maragoni L, Modenato G, Rossi N D, et al.Composites Part B: Enginee-ring, 2020, 199, 108282.
14 徐鹏, 顾轶卓, 吴臣君,等. 玻璃钢/复合材料, 2019, 302(3), 51.
15 Eun J H, Dong H K, Lee J S. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105987.
16 Chen S, Feng J.Composites Science & Technology, 2014, 101, 145.
17 Bisht A, Dasgupta K, Lahiri D.Composites Part A: Applied Science and Manufacturing, 2019, 126, 105601.
18 Xiao C, Tan Y, Wang X, et al. Chemical Physics Letters, 2018, 703, 8.
19 吴宝昌. 碳纤维复合材料层压板的力学性能及缺陷分析. 硕士学位论文, 哈尔滨工业大学, 2009.
20 李平, 李逸, 张永建, 等. 塑料工业, 2019, 47(12), 45.
21 Yao J, Zhang T, Niu Y. Composite Structures, 2020, 248, 112550.
22 杨康, 赵为平, 赵立杰, 等. 材料导报, 2019(1), 223.
23 熊明洋. 湿热环境对碳纤维树脂基层合板的力学性能影响研究. 硕士学位论文, 浙江理工大学, 2016.
24 周乾飞, 冯奇, 侯进森, 等. 上海汽车, 2016(11), 48.
25 Behera A, Thawre M M, Ballal A.Materials Today: Proceedings, 2020, 28(2), 940.
26 Cunha J A P, Silva T C, Costa M L, et al. Engineering Failure Analysis, 2020, 120(21), 105051.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[3] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[4] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[5] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[6] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[7] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[8] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[9] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[10] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[11] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[12] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[15] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed