Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 381-384    
  金属与金属基复合材料 |
B原子促进高熵合金FCC2相的形成机制
侯丽丽1, 郭强2, 要玉宏3, 刘江南3
1 陕西工业职业技术学院材料工程学院,咸阳 712000
2 西部超导材料科技股份有限公司,西安 710018
3 西安工业大学材料与化工学院,西安 710021
Mechanism of B Atom Promoting Formation of FCC2 Phase in High Entropy Alloy
HOU Lili1, GUO Qiang2, YAO Yuhong3, LIU Jiangnan3
1 School of Materials Science and Engineering, Shaanxi Polytechnic Institute, Xianyang 712000, China
2 Western Superconducting Technologies Co., Ltd, Xi'an 710018, China
3 School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 7982KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空电弧熔炼炉制备了CoFeNiMnBx高熵合金,并对其微观组织和凝固过程进行研究。结果表明,合金中加入B原子后,合金的凝固方式发生了改变,B原子促进FCC2相的形成,随B含量的增加,合金的组织由单一的FCC1相转变为FCC1相+FCC2相(块状或条状富B元素和Co元素的FCC2相及其上弥散分布的颗粒状富Ni元素的FCC2相)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯丽丽
郭强
要玉宏
刘江南
关键词:  高熵合金  B  FCC2  形成机制    
Abstract: CoFeNiMnBx high entropy alloy was prepared by vacuum arc melting furnace, and its microstructure and solidification process were studied. The results show that with the increase of B content, the microstructure of the alloy changes from single FCC1 phase to FCC1 + FCC2 phase (block or strip FCC2 phase rich in B and Co and granular FCC2 phase rich in Ni). The solid solubility of B atom in the alloy and the matrix alloy is small. During the solidification process, B atom is easy to accumulate in the solid-liquid front, which changes the solidification mode of the alloy, causes partial aggregation of some elements in the alloy, and changes the solidification mode of the alloy. B atom promotes the formation of FCC2 phase.
Key words:  high entropy alloy    B    FCC2    formation mechanism
                    发布日期:  2021-12-09
ZTFLH:  TG139  
通讯作者:  houlili1983@126.com   
作者简介:  侯丽丽,陕西工业职业技术学院讲师。2020年12月,在西安工业大学获得工学博士学位,毕业后进入陕西工业职业技术学院任教。以第一作者在国内外学术期刊上发表论文10余篇。研究工作主要为高熵合金、铝基复合材料等。
引用本文:    
侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
HOU Lili, GUO Qiang, YAO Yuhong, LIU Jiangnan. Mechanism of B Atom Promoting Formation of FCC2 Phase in High Entropy Alloy. Materials Reports, 2021, 35(z2): 381-384.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/381
1 Bhattacharjee T, Wani I S, Sheikh S, et al.Scientific Reports, 2018,8, 3276.
2 Chuan Z, Michael C, Shih K L.The Journal of The Minerals,Metals and Materials Society, 2019,71(10),3417.
3 Jae B S, Jae W B, Li Z M, et al. Acta Materialia, 2018,151,366.
4 Xu C, Fan G H, Nakata T, et al.Metallurgical and Materials Transactions A, 2018,23,115.
5 Chen Q S, Lv Y P, Dong Y, et al.Transaction of Nonferrous Metals Society of China, 2015,25,2958.
6 Zhang C, Chen G J, Dai P Q.Materials Science and Technology, 2016, 32,1666.
7 Tang Q H, Cai J B, Wu G F, et al.Foundry, 2011, 60(1),24.
8 Tasan C C, Deng Y, Pradeep K G, et al. The Journal of the Minerals, Metals and Materials Society, 2014,66, 1993.
9 Jose Y, Aguilar H, Alejandro V U, et al. Materials Science and Enginee-ring A, 2019, 748, 244.
10 Zhao W L, Miao D H, Zhang Y, et al. Journal of Iron and Steel Research(International), 2017, 24(4), 4.
11 Zong R P. Materials Science and Engineering A, 2018, 737, 132.
12 Guo S, Hu Q,Ng C,et al.Intermetallics, 2013, 41,96.
13 Gu T F, Pan Y, Lu T. Materials Characterization, 2018,141,115.
14 Chen Z N, Kang H J, Fan G H, et al. Acta Materialia, 2016,120,168.
15 Wang L, Bian X F.Materials Science Technology, 2000,16,517.
16 Fu H D, Zhang Z H, Wu X S, et al.Intermetallics, 2013,35, 67.
17 Liu Y, Liu C T, Heatherly L, et al. Script Materialia, 2011,64,303.
18 Li Daxin, Yang Zhihua, Jia Dechang.Corrosion Science, 2017, 126, 10.
19 Gu T F, Pan Y, Lu T. Materials Characterization, 2018,141, 115.
20 Laha K, Kyono J. Script Materialia, 2005,52, 675.
21 Chen S T, Tang W Y, Kuo Y F, et al. Materials Science and Enginee-ring A, 2010, 527 (21), 5818.
22 Bai J G, Cui Y S, Wang J.Metals, 2018,8,497.
23 Thandorn T,Tsakiropoulos P.Intermetallics, 2010,18,1033.
24 Yuji I, Fritz K, Isao T.Entropy, 2018, 20,655
[1] 张凯, 高本征, 龚旻, 罗波, 范锦鹏. 软模板法制备六瓣状氧化铝微米片[J]. 材料导报, 2021, 35(z2): 68-71.
[2] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[3] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[4] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[5] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[6] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[7] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[8] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[9] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[10] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[11] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[12] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[13] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[14] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[15] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed