Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 361-366    
  金属与金属基复合材料 |
液体高速冲蚀与防护涂层研究现状
陈昌隆, 赵宜妮, 李玉阁
大连理工大学材料科学与工程学院,表面工程实验室,大连 116024
Research Status of Liquid Erosion and Protective Coating
CHEN Changlong, ZHAO Yini, LI Yuge
Surface Engineering Laboratory, School of Materials Science and Technology, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 4959KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文面向在天然气、风力发电、火力发电等能源行业中所用设备广泛出现的气液两相流水滴型冲蚀难题,分别对其破坏机制、影响因素、涂层防护技术等方面进行了综述,列举了水滴冲蚀实验所用到的设备、行业标准以及冲蚀试验后的检测手段,并探讨了表面防护涂层的硬度、断裂韧性等物理性能以及涂层的厚度、结构、残余应力等特征对材料的抗水滴冲蚀性能和冲蚀机制的影响,通过相关研究的分析和探讨为抗水滴型冲蚀涂层防护设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈昌隆
赵宜妮
李玉阁
关键词:  气液两相流  水滴型冲蚀  防护涂层  冲蚀机制  水蚀实验    
Abstract: This paper studies the water droplet erosion that is widely used in equipment used in energy industries such as natural gas, wind power, thermal power generation, etc.,and further reviewed the damage mechanism, influencing factors of droplet erosion and coating protection technique. Meanwhile, this article also lists the equipment used in the water drop erosion experiment, industry standards, and the detection me-thods after the erosion test. The impact of physical properties such as fracture toughness, thickness, structure, and residual stress of the coating on the water droplet erosion resistance of the enhanced material. Through these methods, the experimental results of the water drop erosion experiment can be effectively obtained to provide a positive reference for the experiment and industrial production.
Key words:  gas-liquid two-phase flow    water droplet erosion    protective coating    erosion mechanism    water erosion test
                    发布日期:  2021-12-09
ZTFLH:  TG156.88  
  TB114.2  
基金资助: 国家重点基础研究发展计划(2018YFA0704603);国家自然科学基金(51601029;U1508218);中央高校基本科研业务费专项资金(DUT19JC52)
通讯作者:  ygli@dlut.edu.cn   
作者简介:  陈昌隆,2016年7月毕业于沈阳工业大学,获得工学学士学位。现为大连理工大学材料学院硕士研究生,在李玉阁副教授的指导下进行研究。目前主要研究领域为CrNx涂层的强韧性研究.
李玉阁,工学博士,副教授,硕士研究生导师。中国机械工程学会表面工程分会青年工作委员会委员,国家973计划项目秘书。2013年于上海交通大学博士毕业后,同年加入大连理工大学材料学院表面工程实验室工作至今。长期从事材料表面工程理论和应用研究,主要研究方向是高功率脉冲等离子体技术与装备、硬质涂层的强韧化机理及极端环境服役涂层开发与应用。
引用本文:    
陈昌隆, 赵宜妮, 李玉阁. 液体高速冲蚀与防护涂层研究现状[J]. 材料导报, 2021, 35(z2): 361-366.
CHEN Changlong, ZHAO Yini, LI Yuge. Research Status of Liquid Erosion and Protective Coating. Materials Reports, 2021, 35(z2): 361-366.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/361
1 Rao J S. Mechanism and Machine Theory, 1998, 33(5), 599.
2 Heymann F J. Transaction of the ASME. 1968, 90(3), 400.
3 Lesser M. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1981, 377(1770), 289.
4 Zhou Q, Li N, Chen X, et al. International Journal of Impact Engineering, 2009, 36, 1156.
5 Field J. Wear, 1999, 233, 1.
6 Gohardani O. Progress in Aerospace Sciences, 2011, 47, 280.
7 Mohamed E I, Materials, 2020, 13, 157.
8 Najafabadi A H, Razavi R S, Moza R, et al. Metalurgicall and Materials Transactions A-Physical Metallurgy and Materials Science, 2014, 45, 2522.
9 Lee M K, Kim W W, Rhee C K, et al. Metalurgicall and Materials Transactions A-Physical Metallurgy and Materials Science, 1999, 30, 961.
10 Ma D, Harvey T J, Wellman R G, et al. Journal of Alloys and Compounds, 2019, 788, 719.
11 Tobin E F, Young T M, Raps D, et al. Wear, 2011, 271, 2625.
12 Ma D, Mostafa A, Kevorkov D, et al. Metals, 2015, 5, 1462.
13 Mahdipoor M, Tarasi F, Moreau C, et al. Wear, 2015, 330, 338.
14 Kirols H S, Mahdipoor M S, Kevorkov D, et al. Material and Design, 2016, 104, 76.
15 Oka Y I, Hayashi H. Wear, 2011, 271, 1397.
16 Luiset B, Sanchette F, Billard A, et al. Wear, 2013, 303, 459.
17 Mahdipoor M S, Kirols H S, Scientific Reports, 2015, 5, 14182.
18 Kirols H S, Kevorkov D, Uihlein A, et al. Wear, 2015, 342, 198.
19 Marzbali M, Dolatabadi A. Physics of Fluids, 2020, 32(11), 112101.
20 Fujisawa N, Takano S, Fujisawa K, et al. Wear, 2018, 398, 158.
21 Sasaki H, Ochiai N, Iga Y. International Journal of Fluid Machinery and Systems, 2016, 9, 57.
22 Xiong J, Koshizuka S, Sakai M. Journal of Nuclear Science and Technology,2012, 41, 145.
23 Saeedi R, Razavi R S, Bakhsh S R, et al. Ceramics International, 2021, 47, 4097.
24 Oka Y I, Hayashi H. Wear. 2009, 267, 1804.
25 Cortes E, Sanchez F, Domenech L, et al. Materials, 2017, 10, 1146.
26 Zhang Z Y, Zhang D, Xie Y H. Wear, 2019, 432, 202950.
27 Borawski B, Todd J, Singh J, et al.Wear, 2011,271, 2890.
28 Mahdipoor M S, Kevorkov D, Jedrzejowski P, et al. Materials and Design, 2016, 89, 1095.
29 魏荣华. 中国表面工程, 2009, 22(1), 1.
30 Hovsepian P E, Ehiasarian A P, Purandare Y P, et al. Journal of Alloys and Compounds, 2018, 746, 583.
31 Chen H, Zheng B C, Li Y G, Wu Z L, Lei M K. Thin Solid Films, 2019, 669, 377.
32 Zhang R F, Argon A S, Veprek S. Physical Review Letters, 2009, 102, 015503.
33 Yue Y, Gao Y, Hu W. Nature, 2020, 582,370.
34 Li Y G, Yuan H, Jiang Z T, Pan N, et al. Surface and Coatings Techno-logy, 2020, 385, 125387.
35 SuY L, Yao S H, Wei C S, et al. Thin Solid Films, 1998, 315, 153.
36 Knapp J A, Follstaedt D M. Journal of Materials Research, 2004, 19, 218.
37 Koehler J S. Physical Review Letters, 1970, B2, 547.
38 Misra A, Kung H. Advanced Engineering Materials, 2001, 3, 217.
39 Holleck H, Schier V. Surface and Coatings Technology, 1995, 76-77(95), 328.
40 Urakami A, Fine M E. Scripta Metallurgica, 1970, 4(9), 667.
41 Clegg W J, Kendall K, Alford N M, et al. Nature, 1990, 347(6292), 455.
42 Lackner J M, Major L, Kot M. Bulletin of the Polish Academic of Sciences Technical Sciences, 2011, 59, 343.
43 Shang H F, Li J, Shao T M. Applied Surface Science, 2014, 310, 317.
44 Ali R, Sebastiani M, Bemporad E. Materials and Design, 2015, 75, 47.
45 Major L, Morgiel J, Major B, et al. Surface and Coatings Technology, 2006, 200, 6190.
46 Buchmann M, Gadow A, Tabellion J.Materials Science & Engineering A, 2000, 288, 154.
47 Bian D, Yang D L, Zhao Z L,et al. Ceramics International, 2015, 41, 9088.
48 Qiu L S, Zhu X D, Xu K W.Surface and Coatings Technology, 2017, 332, 267.
49 Xiao L R, Nie Y C, Zhao X J, et al.Surface Technology, 2020, 49, 203.
50 Keckes J, Bartosik M, Daniel R, et al. Scripta Materialia, 2012, 67, 748.
51 Stefenelli M, Todt J, Riedl A, et al. Journal of Applied Crystallography, 2013, 46, 1378.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed