Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 294-297    
  金属与金属基复合材料 |
玻璃粉体系对MLCC用铜电极浆料性能的影响
靳学昌1, 高珺2, 李岩2, 陈将俊2, 刘春静2, 赵宁1
1 大连理工大学材料科学与工程学院,大连 116024
2 大连海外华昇电子科技有限公司,大连 116023
Influence of Glass Powder Systems on Performance of Copper-based Electrode Paste for MLCC
JIN Xuechang1, GAO Jun2, LI Yan2, CHEN Jiangjun2, LIU Chunjing2, ZHAO Ning1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Dalian Overseas Huasheng Electronic Technology Co., Ltd., Dalian 116023, China
下载:  全 文 ( PDF ) ( 12078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多层陶瓷电容器(MLCC)在电子、通信、航天等领域应用广泛,MLCC铜端电极对MLCC的性能起到关键性作用。探究了玻璃粉体系对MLCC铜端电极组织、性能的影响,分析了不同尺寸的玻璃体系对铜端电极的组织结构及耐酸性能的影响,研究表明:ZnO-B2O3-SiO2体系制备的端电极烧结后在端电极与瓷体之间界面处形成较厚的过渡层,这有利于提高端电极在瓷体上的附着力,但端电极表面出现玻璃泡结构,不利于后续的电镀工艺。降低ZnO-B2O3-SiO2体系玻璃粉尺寸,烧结后界面处形成更厚的过渡层,但端电极表面出现了更多的玻璃泡。向D50为1.5 μm的ZnO-B2O3-SiO2玻璃粉制备的浆料内加入一定量的BaO-ZnO-B2O3体系玻璃粉,烧结表面的玻璃泡结构经镀液腐蚀后消失,有利于镀层均匀附着在端电极上,从而更适合MLCC用铜端电极浆料的开发。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳学昌
高珺
李岩
陈将俊
刘春静
赵宁
关键词:  多层陶瓷电容器  端电极  电极浆料  玻璃粉    
Abstract: Multilayer Ceramic Capacitors (MLCC) are widely used in the fields of electronics, communications, aerospace, etc. And copper terminal electrode plays a key role in the performance of MLCC. This paper explored the influence of glass powder systems on the structure and performance of copper terminal electrode. The effects of glass systems with different sizes on the microstructure and acid resistance of the copper terminal electrode were analyzed in detail. The conclusions are as followed. A thick transition layer was formed at the interface between the terminal electrode prepared by ZnO-B2O3-SiO2 glass powder system and the ceramic body after sintering, improved the adhesion of the terminal electrode on the ceramic body. While the glass bubbles formed on the surface of the terminal electrode were harmful for the subsequent electroplating process. And a thicker transition layer was formed at the interface after sintering with more glass bubbles appeared on the surface of the terminal electrode by reducing the size of the ZnO-B2O3-SiO2 glass powder. Then the ZnO-B2O3-SiO2 glass powder slurry with a 1.5 μm size (D50) mo-dified by adding a certain amount of BaO-ZnO-B2O3 glass powder system resulted the glass bubbles on the sintered surface disappeared after etching by plating solutions, which is beneficial to achieve a uniform coating on the terminal electrode for electroplating, and more suitable for the copper paste of terminal electrode.
Key words:  multilayer ceramic capacitor    terminal electrode    electrode paste    glass powder
                    发布日期:  2021-12-09
ZTFLH:  TM241  
基金资助: 国家自然科学基金(52075072);中央高校基本科研业务费专项资金(DUT20JC46)
通讯作者:  zhaoning@dlut.edu.cn   
作者简介:  靳学昌,硕士研究生,主要从事导电浆料工作。
赵宁,大连理工大学教授,博士研究生导师。主要研究电子封装微互连材料与技术的基础理论及应用。
引用本文:    
靳学昌, 高珺, 李岩, 陈将俊, 刘春静, 赵宁. 玻璃粉体系对MLCC用铜电极浆料性能的影响[J]. 材料导报, 2021, 35(z2): 294-297.
JIN Xuechang, GAO Jun, LI Yan, CHEN Jiangjun, LIU Chunjing, ZHAO Ning. Influence of Glass Powder Systems on Performance of Copper-based Electrode Paste for MLCC. Materials Reports, 2021, 35(z2): 294-297.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/294
1 王勇. 高温X8R陶瓷电容器研究.硕士学位论文, 电子科技大学, 2012.
2 Wu S P. IEEE Transactions on Components & Packaging Technologies, 2006, 29, 827.
3 Dmitrieva A V, Gordeev P S, Gallai I Y. Key Engineering Materials, 2019, 822, 885.
4 张丽丽, 宣天鹏. 稀有金属快报, 2008, 27(9), 5.
5 尚小东, 宋永生, 罗文忠, 等. 广东化工, 2017, 44(13), 321.
6 蒙青, 屈银虎, 成小乐, 等. 功能材料, 2016, 47(2), 2130.
7 马国超, 朱晓云, 裴占铃, 等. 传感技术学报, 2014, 27(8), 1013.
8 唐浩, 卢艺森, 李基森. 电子元件与材料, 2006, 25(11), 50.
9 吕楠, 朱玉梅, 刘铁山, 等. 陶瓷学报, 1997, 18(4), 228.
10 肖汉宁, 李格. 湖南大学学报(自然科学版), 2018, 45(6), 85.
11 梁力平, 赖永雄, 李基森. 片式叠层陶瓷电容器的制造与材料, 暨南大学出版社, 2008.
12 郑伟宏, 盛丽, 周颖,等. 硅酸盐通报, 2017, 36(4), 1143.
[1] 侯晨阳, 付明, 刘雷, 尹光, 汪小红, 吕文中, 范琳. 玻璃粉对PERC太阳能电池铝电极结构和性能的影响[J]. 材料导报, 2020, 34(22): 22005-22009.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed