Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 218-223    
  无机非金属及其复合材料 |
煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究
葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森
中国矿业大学(北京)力学与建筑工程学院,北京 100083
Study on Mechanics and Durability of Coal Gangue Coarse Aggregate-Geopolymer Concrete
GE Jieya, ZHU Hongguang, LI Zonghui, LI Weijian, SHEN Zhengyan, HOU Jinliang, YANG Sen
School of Mechanics & Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
下载:  全 文 ( PDF ) ( 8975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将原状和煅烧的煤矸石粗骨料分别按不同掺量替代碎石,制备煤矸石粗骨料-地聚物混凝土,分析了煤矸石掺入量、煅烧与否对混凝土28 d抗压强度、抗氯离子渗透性能、抗冻性能的影响,并探究混凝土性能指标之间的相关性、煤矸石粗骨料的合适掺量及其煅烧的必要性。此外,借助扫描电镜探讨其内部机理。结果显示:随着煤矸石粗骨料掺入量增加,煤矸石粗骨料地聚物混凝土的抗压性能、抗渗性能、抗冻性能均会在不同程度上减弱,其中以抗冻性能的影响最为显著;与原状煤矸石粗骨料地聚物混凝土相比,相同煤矸石掺量下的煅烧煤矸石粗骨料地聚物混凝土在抗压强度上展现出很大的优势,抗氯离子渗透性能不如原状煤矸石地聚物混凝土,抗冻性能与原状粗骨料地聚物混凝土差别不大;煤矸石粗骨料合适掺量的阈值为50%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛洁雅
朱红光
李宗徽
李为健
沈正艳
侯金良
杨森
关键词:  煤矸石  地聚物  混凝土  抗压强度  氯离子渗透  抗冻性能    
Abstract: The original and calcined coal gangue coarse aggregates were replaced with different amounts of crushed stone, respectively, to prepare coal gangue coarse aggregate-geopolymer concrete. Through experiments, the influences of the content of gangue and whether it was calcined or not on the compressive strength, chloride ion permeability and freezing-thawing resistance of concrete for 28 d were analyzed, and the correlation between the performance indexes of concrete, the appropriate content of gangue coarse aggregate and the necessity of calcination were explored. In addition, The internal mechanism was discussed by means of the scanning electron microscope(SEM). The results show that with the increase of the amount of coal gangue coarse aggregate, the compressive property, impermeability and freezing-thawing resistance of coal gangue coarse aggregate geopolymer concrete will be weakened to different degrees, among which the freezing-thawing resistance is the most significant. Compared with the raw gangue coarse aggregate ground polymer concrete, the calcined gangue coarse aggregate ground polymer concrete with the same coal gangue content shows great advantages in compressive strength, the chloride ion permeability resistance of the raw gangue ground polymer concrete is not as good as that of the original gangue ground polymer concrete, and the frost resistance of the raw gangue ground polymer concrete is not much different from that of the original coarse aggregate.
Key words:  coal gangue    geopolymer    concrete    compressive strength    chloride penetration    frost resistance
                    发布日期:  2021-12-09
ZTFLH:  TU528.59  
基金资助: 北京市自然科学基金(8164061);国家自然科学基金(51578539);中央高校基本科研业务费优秀青年项目(2020YQLJ03);中国矿业大学(北京)“越崎青年学者”
通讯作者:  zhg@cumtb.edu.cn   
作者简介:  葛洁雅,2019年9月就读于中国矿业大学(北京)结构工程专业,硕士研究生,主要从事混凝土耐久性领域的研究。
朱红光,中国矿业大学(北京)副教授,越崎青年学者,北京市级虚拟仿真实验项目负责人。2012年博士毕业于中国矿业大学(北京)工程力学专业留校至今。在国内外学术期刊上发表论文50余篇,获8项国家发明及实用新型专利。研究方向主要为固废混凝土的数字化设计与长期性能研究。主持和参与国家重大基础研发计划3项、国家自然科学基金2项、北京市自然科学基金青年项目1项、北京市新型墙材专项基金支持项目1项、国家重点实验室开放课题3项等。
引用本文:    
葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
GE Jieya, ZHU Hongguang, LI Zonghui, LI Weijian, SHEN Zhengyan, HOU Jinliang, YANG Sen. Study on Mechanics and Durability of Coal Gangue Coarse Aggregate-Geopolymer Concrete. Materials Reports, 2021, 35(z2): 218-223.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/218
1 刘阳, 王晴, 许峰, 等.混凝土, 2012(8), 110.
2 Guo W, Li D X. Journal of Wuhan University of Technology, 2009,24(2), 326.
3 Wang J M, Qin Q, Hu S J, et al.Journal of Cleaner Production, 2016, 112 (1), 631.
4 Cong X Y, Lu S, Yao Y, et al.Materials and Design, 2016, 97,155.
5 顾云, 张彬等.混凝土, 2019(7), 71.
6 周梅, 李少伟, 窦艳伟, 等.建筑材料学报,2018,21(6),984.
7 王亮, 王志伟.混凝土,2018(3),153.
8 李永靖, 邢洋, 张旭, 等.煤炭学报, 2013,38(7),1215.
9 易成, 马宏强, 朱红光, 等.建筑材料学报,2017,20(5),787.
10 马宏强, 易成, 朱红光, 等.材料导报:研究篇, 2018, 32(7), 2390.
11 Acevedo-Martinez E, Gomez-Zamorano L Y, et al. Construction and Building Materials, 2012,37(12), 462.
12 Ma H Q, Chen H Y, Zhu H G, et al. Construction and Building Mate-rials, 2019, 225, 204.
13 Ma H Q, Yi C. Materials, 2019, 12(14), 2250.
14 Yi, C,Ma H Q, Zhu H G, et al. Construction and Building Materials, 2018, 167, 649.
15 杜康武.科技创新导报,2018,15(11), 152.
16 Dong Z C, Xia J W, Fan C, et al. Construction and Building Materials,2015,100, 63.
17 曹永丹, 李彦鑫, 张金山, 等.硅酸盐学报,2017,45(8),1153.
18 Ma H Q, Zhu H G, Yi C, et al. Materials, 2019, 12(14), 2250.
19 Mario Collepardi, Silvia Collepardi, Roberto Troli, et al. Concrete mix design, 2009.
20 GB/T 50081-2019,混凝土物理力学性能试验方法标准, 中国建筑工业出版社,2019.
21 李少伟, 周梅, 张莉敏,等.建筑材料学报,2020,23(2), 334.
22 白朝能,李霖皓,沈远, 等.煤炭科学技术,2020,48(S1), 270.
23 戚鹏.资源信息与工程,2020,35(1), 56.
24 马宏强,易成,陈宏宇, 等.材料研究学报,2018,32(12), 898.
25 董作超. 煤矸石集料混凝土的力学性能与抗碳化试验研究.博士学位论文,中国矿业大学,2016.
[1] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[2] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[3] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[4] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[5] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[6] 韩向朝, 潘毅, 谢雨冬, 张旋, 郝哲昕, 钱春香. 无人机图像采集法对清水混凝土外观质量评价的研究[J]. 材料导报, 2021, 35(z2): 205-212.
[7] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[8] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[9] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[10] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[11] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[12] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[13] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[14] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[15] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed