Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 634-638    
  高分子与聚合物基复合材料 |
调湿材料的研究与应用现状
谢贵堂1, 张均1, 姚明1, 王宇川2, 蒋国昌1,3, 姜志国1
1 北京化工大学材料科学与工程学院,北京 100029
2 中电保利(北京)科技有限公司,北京 100020
3 惠州北化工产学研基地有限公司,惠州 516081
Research and Application Status of Humidity-controlling Materials
XIE Guitang1, ZHANG Jun1, YAO Ming1, WANG Yuchuan2, JIANG Guochang1,3, JIANG Zhiguo1
1 School of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029,China
2 Poly Power (Beijing) Technology Company Limited, Beijing 100020,China
3 Huizhou Beihuagong Industry-University-Research Base Technology Company Limited, Huizhou 516081, China
下载:  全 文 ( PDF ) ( 2138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 调湿材料能够感应环境湿度变化,利用自身物理结构和化学特性实现对环境湿度的调控。该调节方法不消耗人工能源,属于被动式调节,符合绿色可持续发展理念。调湿材料的研究开始于无机材料,后来发展到有机材料,但两类材料都各自存在缺点,吸湿与导湿性能不能兼并实现,这严重阻碍调湿材料的应用与发展。
调湿材料的发展趋向于有机/无机复合调湿体系,有机高分子材料超高吸水、高吸湿容量能够弥补无机材料易潮解、湿容量小的缺点,同时无机材料多孔隙结构能够弥补有机高分子材料导湿性差的不足,两者优势互补赋予了调湿材料应答性好、吸放湿滞后环小的特点。
近些年将具备调湿性能的原材料制备成复合调湿材料,使得调湿材料的吸湿与导湿性能得到提升,应用领域不断拓宽,例如,调湿材料依靠其无源、绿色环保等优点在建筑室内湿度调节、馆藏书籍文物保护、食品药品贮存等领域均有应用。
本文概括了调湿材料的调湿机理,综述了不同调湿材料的研究现状以及调湿材料在建筑、文物保护和食品药品保存领域的应用情况,同时展望了调湿材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢贵堂
张均
姚明
王宇川
蒋国昌
姜志国
关键词:  调湿材料  机理  有机  无机  复合材料    
Abstract: Humidity-controlling materials can sense the humidity changes in environment, and use their own physical structure and chemical properties to achieve environment humidity-controlling. This adjustment method does not consume artificial energy and belongs to passive adjustment, in line with the concept of green sustainable development. The inorganic humidity-controlling materials are first used and the organic are developed later, but both types of materials have their own shortcomings. Their moisture absorption and moisture conductivity properties cannot be combined, which seriously hinders their application and development.
The development of humidity-controlling materials tends to be organic/inorganic composite system. In this system, organic materials show ultra-high water absorption and high moisture absorption capacity, which can make up for the shortcomings of inorganic materials, that the inorganic materials deliquesce easily and show small moisture capacity. While the inorganic materials has a porous structure, which can make up for the shortcoming of organic materials, that the organic materials lack moisture conductivity. The combination of inorganic and organic materials enables the humidity-controlling materials a good response and a small hysteresis loop.
In recent years, composite materials composed of different materials with humidity-controlling property show an improved moisture-absorbing and moisture-conducting properties. And the process of humidity-controlling is passive and green. That expanded the applications of humidity-controlling materials in different fields. For example, they have been used in the fields of indoor humidity adjustment, protection of books and cultural relics in the collection, and storage of food and medicine.
This article summarizes the humidity-controlling mechanism, and the research status of different humidity-controlling materials and the application of humidity control materials in the fields of construction, cultural relics protection, and food and drug preservation. At the same time, the development direction of humidity-controlling materials is prospected.
Key words:  humidity-controlling materials    mechanism    organic    inorganic    composite material
                    发布日期:  2021-07-16
ZTFLH:  TB381  
通讯作者:  jiangking@vip.sina.com   
作者简介:  谢贵堂,2018年进入北京化工大学攻读硕士学位,目前从事吸湿材料相关研究。姜志国,北京化工大学材料科学与工程学院副教授。研究领域为聚氨酯功能材料、智能材料。
引用本文:    
谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
XIE Guitang, ZHANG Jun, YAO Ming, WANG Yuchuan, JIANG Guochang, JIANG Zhiguo. Research and Application Status of Humidity-controlling Materials. Materials Reports, 2021, 35(Z1): 634-638.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/634
1 西藤, 宫野, 田中. 日本建筑学会研究报告, 1949, pp.3.
2 侯国艳, 冀志江, 王静, 等. 材料导报, 2008, 22(8), 78.
3 罗曦芸, 吴来明, 张文清, 等. 文物保护与考古科学, 2009, 21(S1), 11.
4 闫全智, 贾春霞, 冯寅烁, 等. 建筑节能, 2010, 38(12), 41.
5 冉茂宇. 材料导报, 2002, 16(11), 42.
6 冀志江, 张连松, 王静, 等. 国际智能与绿色建筑技术研讨会. 北京,2005, pp.872.
7 蒋正武, 孙振平, 王培铭. 硅酸盐学报, 2003, 31(8), 770.
8 蒋正武. 材料导报, 2006, 20(10), 8.
9 李鑫, 李忠, 夏启斌. 华南理工大学学报(自然科学版), 2006, 34(8), 13.
10 刘业凤, 王如竹. 上海理工大学学报, 2006, 28(2), 107.
11 王吉林, 王志伟. 科技资讯, 2007, 25(9), 3.
12 黄沛增, 李荣, 任普亮, 等. 陕西建筑, 2016, 13(3), 30.
13 Zhou B, Shi J, Chen Z Q. Applied Thermal Engineering, 2018, 128(8), 604.
14 郭振华, 尚德库, 梁金生, 等. 硅酸盐学报, 2004, 32(11), 1405.
15 罗曦芸, 金鑫荣. 化工新型材料, 2000, 12(3), 15.
16 李鑫, 李慧玲, 冯伟洪, 等. 中南大学学报(自然科学版), 2011, 42(1), 28.
17 杨海亮, 彭志勤, 周旸, 等. 化工学报, 2010, 61(12), 3302.
18 王荣民, 张少飞, 郭俊峰, 等. 涂料工业, 2011, 41(11), 62.
19 张秀梅. 调湿墙体材料及其调湿性能的研究. 硕士学位论文, 天津大学, 2005.
20 尚建丽, 陈丹, 武斌. 化工新型材料, 2015, 43(1), 107.
21 王志伟. 复合调湿抗菌材料的制备与性能研究. 硕士学位论文, 天津大学, 2007.
22 朱永峰. 功能性丙烯酸酯共聚物乳液的制备及其在调湿涂料中的应用. 硕士学位论文, 西北师范大学, 2012.
23 万明球, 金鑫荣, 罗曦芸. 功能高分子学报, 1995, 3(6), 271.
24 李鑫, 冯伟洪, 卢其明, 等. 中南大学学报(自然科学版), 2010, 41(4), 1327.
25 黄季宜, 金招芬. 暖通空调, 2002, 32(1), 105.
26 Yang H, Peng Z, Zhou Y, et al. Energy & Buildings, 2011, 43(2-3), 386.
27 吴智敏, 陈智, 秦孟昊. 土木建筑与环境工程, 2018, 40(4), 13.
28 Batten S, Champness N, Chen X M, et al. Pure and Applied Chemistry, 2013, 85(3), 1715.
29 Abdulhalim R G, Bhatt P M, Belmabkhout Y, et al. Journal of the Ame-rican Chemical Society, 2017, 139(31), 10715.
30 Abtab S M T, Alezi D, Bhatt P, et al. Chemistry, 2018, 4(1), 94.
31 胡明玉, 李晔, 郭兴国, 等. 建筑科学, 2019, 35(4), 35.
32 戴红旗, 吴来明, 洪瑜, 等. 中国专利, CN101328699. 2008.
33 沈跃华, 吴来明, 解玉林, 等. 中国专利, CN101343850A. 2009.
34 王丛, 刘莹, 史晓娟, 等. 中国包装, 2011, 31(2), 42.
35 张云, 丁荣华. 中国专利, CN106742765A. 2017.
[1] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[2] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[3] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[4] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[5] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 李崇智, 牛振山, 吴慧华, 曹莹莹. 新型水泥基渗透结晶型防水剂的制备及性能[J]. 材料导报, 2021, 35(Z1): 216-219.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[10] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[11] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[12] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[13] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[14] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[15] 郝娴, 顾强, 陈子豪, 刘国齐, 李红霞. 浸入式水口堵塞机理及防堵措施[J]. 材料导报, 2021, 35(Z1): 489-494.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed