Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 232-237    
  无机非金属及其复合材料 |
基于SHPB实验的煤层气井固井水泥冲击能量耗散特征研究
陈立超1,2, 王生维1,3, 张典坤1
1 煤与煤层气共采国家重点实验室,晋城 048204
2 内蒙古工业大学矿业学院,呼和浩特 010051
3 中国地质大学(武汉)资源学院,武汉 430074
Research on Impact Energy Dissipation Characteristics of Cement of Coalbed Methane Wells Based on SHPB Test
CHEN Lichao1,2, WANG Shengwei1,3, ZHANG Diankun1
1 State Key Laboratory of Coal and CBM Co-mining, Jincheng 048204, China
2 School of Mining and Technology,Inner Mongolia University of Technology, Hohhot 010051, China
3 Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 5030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤层气井射孔环节固井水泥冲击破坏是制约井筒完整性与层间封隔能力的关键,查明固井水泥冲击破坏中的能量耗散特征对优化气井固井水泥体系、改进射孔工艺参数具有实际意义。本研究利用分离式霍普金森压杆装置对煤层气井普通固井水泥、纤维固井水泥试样进行高速冲击加载,结合能量耗散理论对两类固井水泥材料在高速冲击中的能量时程演化、能量分配关系及能量吸收效率影响因素等进行研究,结合试样动态破坏形式特征探讨了冲击能量与材料破坏间的关系。结果表明:(1)相对普通固井水泥,纤维固井水泥吸收能达到平衡较晚,说明普通固井水泥脆断后能量需求减弱,纤维固井水泥由于韧性断裂不彻底后期能量需求依然较高;(2)普通固井水泥冲击破坏形式为脆性破碎,而纤维固井水泥则呈现出均匀断裂破坏特征,纤维增韧效果显著;(3)纤维固井水泥通过界面解离和纤维拉拔效应提升了冲击能量吸收效率,试样破坏程度相对较轻;(4)固井水泥材料冲击下的能量分配与材料结构和强度演化、外部加载条件的量化关系问题值得跟踪关注。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈立超
王生维
张典坤
关键词:  射孔  冲击能量耗散  防冲击  韧性水泥基固井材料  煤层气井    
Abstract: The impact damage of cement of coalbed methane wells is the key to restrict the integrity of wellbore and the ability of interlayer isolation. In this study, impact energy time history evolution, the relationship between the energy distribution and energy absorption efficiency of pure cement, fiber cement were studied using the split Hopkinson pressure bar apparatus, the relationship between impact energy and material damage were analyzed combined with the dynamic damage feature, concluded that: (Ⅰ) fiber cement's absorption energy reaches equilibrium later, indicating that the energy demand of pure cement weakens after brittle fracture, while the energy demand of fiber cement remains high in the later period due to incomplete ductile fracture;(Ⅱ) the impact damage of pure cement is brittle fracture, while that of fiber cement shows uniform fai-lure characteristics, and the toughening effect of fiber is significant; (Ⅲ) the impact energy absorption efficiency of fiber cement is improved through interfacial dissociation and fiber pullout effect, and the damage degree of the sample is relatively light; (Ⅳ) the quantitative relationship between the energy distribution under impact of cementing materials and the evolution of material structure and strength, as well as the external loading conditions is critical.
Key words:  perforation    impact energy dissipation    impact resistant    ductile cement based cementing material    coalbed methane wells
                    发布日期:  2021-07-16
ZTFLH:  TU45  
  TE321  
基金资助: 山西省煤层气联合研究基金(2016012007)
通讯作者:  chenlichaogas@163.com   
作者简介:  陈立超,内蒙古工业大学副教授,硕士研究生导师。2009、2012、2016年于中国地质大学(武汉)获矿产普查与勘探专业学士、硕士和博士学位,2016年起为山西晋能控股煤与煤层气共采国家重点实验室流动研究人员。目前主要从事深部复杂服役环境完井材料性能表征与优化设计研究,承担国家科技重大专项专题、内蒙古自治区科技计划项目、山西省煤层气联合研究基金等科研项目,发表研究论文10余篇,出版学术专著2部。
引用本文:    
陈立超, 王生维, 张典坤. 基于SHPB实验的煤层气井固井水泥冲击能量耗散特征研究[J]. 材料导报, 2021, 35(Z1): 232-237.
CHEN Lichao, WANG Shengwei, ZHANG Diankun. Research on Impact Energy Dissipation Characteristics of Cement of Coalbed Methane Wells Based on SHPB Test. Materials Reports, 2021, 35(Z1): 232-237.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/232
1 陈立超,王生维,张典坤,等.天然气工业,2019,39(8),74.
2 张典坤,陈立超,王生维.天然气工业,2020,40(3),115.
3 刘硕琼,李德旗,袁进平,等. 天然气工业, 2017, 37(7), 76.
4 叶洲元,李夕兵,万国香,等.爆炸与冲击,2009,29(4),419.
5 殷志强,李夕兵,马海峰,等.振动与冲击,2014,33(9),83.
6 金解放,李夕兵,殷志强,等.岩土力学,2013,34(11),3096.
7 黎立云,徐志强,谢和平,等.煤炭学报,2011,36(12),2007.
8 李淼,乔兰,李庆文.岩土工程学报,2017,39(7),1336.
9 许金余,刘石.岩石力学与工程学报,2013,32(S2),3109.
10 平琦,骆轩,马芹永,等.岩石力学与工程学报,2015,34(S2),4197.
11 赵毅鑫,龚爽,黄亚琼.煤炭学报,2015,40(10),2320.
12 张文清,石必明,穆朝民.采矿与安全工程学报,2016,33(2),375.
13 夏昌敬,谢和平,鞠杨,等.工程力学,2006(9),1.
14 Deng Y, Chen M, Jin Y, et al. Journal of Natural Gas Science and Engineering,2016,33, 231.
15 王德荣,刘昭言,刘家贵,等.北京理工大学学报,2017,37(12),1217.
16 李夕兵.岩石动力学基础与应用,科学出版社,2014.
17 宫凤强,王进,李夕兵.岩石力学与工程学报,2018,37(7),1586.
18 Rubin A M, Ahrens T J.Geophysical Research Letters,1991,18(2), 219.
19 赵忠虎,谢和平.四川大学学报(工程科学版),2008,40(2),26.
20 姜耀东,李海涛,赵毅鑫,等.中国矿业大学学报,2014,43(3),369.
[1] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed