Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 211-215    
  无机非金属及其复合材料 |
不同岩性石粉-水泥复合胶凝材料性能研究
孙茹茹1,2, 王振1,2, 黄法礼1,2, 易忠来1,2, 袁政成1,2, 谢永江1,2, 李化建1,2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 高速铁路轨道技术国家重点实验室,北京 100081
Study on Properties of Different Lithology Stone Powder-Cement Composite Cementitious Materials
SUN Ruru1,2, WANG Zhen1,2, HUANG Fali1,2, YI Zhonglai1,2, YUAN Zhengcheng1,2, XIE Yongjiang1,2, LI Huajian1,2
1 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation limited, Beijing 100081, China
2 State Key Laboratory for Track Technology of High-Speed Railway, Beijing 100081, China
下载:  全 文 ( PDF ) ( 3979KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明石灰岩、花岗岩、石英岩和凝灰岩石粉用作混凝土矿物掺合料的可行性,采用X射线衍射仪、Zeta电位仪和总有机碳分析仪分别测定了不同岩性石粉的矿物组成、Zeta电位和减水剂吸附率,研究了石粉-水泥二元复合胶凝材料和石粉-粉煤灰/矿渣粉-水泥三元复合胶凝材料净浆和胶砂的工作性能和力学性能。结果表明:石粉的矿物组成对Zeta电位和减水剂吸附率影响较大,沸石矿物疏松结构使凝灰岩石粉的Zeta电位和减水剂吸附作用随时间变化明显,云母矿物的插层吸附使花岗岩石粉对减水剂的吸附作用明显。不同岩性石粉对复合胶凝材料浆体工作性能的影响与石粉对减水剂的吸附性能密切相关。不同岩性石粉-水泥复合胶凝材料胶砂的抗压强度比和抗折强度比均高于60%,且石粉增加了水泥胶砂的折压比,提高了胶砂试件的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙茹茹
王振
黄法礼
易忠来
袁政成
谢永江
李化建
关键词:  石粉  岩性  胶凝材料  工作性能  力学性能    
Abstract: In order to explore the feasibility of limestone, granite, quartzite and tuff powder as mineral admixture for concrete, the mineral composition, Zeta potential and superplasticizer adsorption rate of stone powder with different lithology were measured by the X-ray diffractometer, Zeta potential analyzer and total organic carbon analyzer. The workability and mechanical properties of the paste and mortar of stone powder-cement binary composite cementitious materials and stone powder-fly ash/slag powder-cement ternary composite cementitious materials were studied. The results show that the mineral composition of stone powder has great influence on Zeta potential and superplasticizer adsorption rate. Zeta potential and superplasticizer adsorption rate of tuff powder change obviously with the increase of time due to the loose structure of zeolite minerals. The intercalation adsorption of mica minerals makes the obvious superplasticizer adsorption of granite powder. The effect of different lithology stone powder on the workability of composite cementitious material paste is closely related to the superplasticizer adsorption of stone powder. The compressive strength ratio and bending strength ratio of different lithology stone powder-cement composite cementitious materials are all higher than 60%, and the stone powder increases the flexural pressure ratio of cement mortar and improves the toughness of the mortar specimen.
Key words:  stone powder    lithology    cementitious materials    workability    mechanical property
                    发布日期:  2021-07-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1934206);国铁集团科技研究开发计划(P2019G001);国家重点研发计划(2018YFC0705401)
通讯作者:  chinasailor@163.com   
作者简介:  孙茹茹,2020年6月毕业于中国铁道科学研究院,获得工学硕士学位,主要从事新型土木工程材料和铁路混凝土结构耐久性领域的研究。李化建,博士,研究员,硕士研究生导师。主持国家自然科学基金4项、国家重点研发计划子课题1项、省部级科研课题12项。成果获国家科技进步二等奖1项,国家技术发明二等奖1项,中国专利优秀奖2项,省部级特等奖2项、一等奖6项、二等奖6项。授权国家发明专利26项,软件著作权3项。出版专著3部,发表SCI/EI论文22篇;编制行业标准16项。主要从事高速铁路混凝土结构耐久性、新型土木工程材料、高速铁路结构工程修复与防护等方面的应用基础研究。
引用本文:    
孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
SUN Ruru, WANG Zhen, HUANG Fali, YI Zhonglai, YUAN Zhengcheng, XIE Yongjiang, LI Huajian. Study on Properties of Different Lithology Stone Powder-Cement Composite Cementitious Materials. Materials Reports, 2021, 35(Z1): 211-215.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/211
1 Kumar S, Kumar R, Bandopadhyay A.Resources, Conservation and Recycling, 2006, 48(3), 301.
2 王振. 铁路工程预应力结构用机制砂及其混凝土性能研究. 硕士学位论文, 中国铁道科学研究院, 2018.
3 Johari M, Brooks J J, Kabir S, et al.Construction and Building Mate-rials, 2011, 25(5), 2639.
4 文俊强. 石灰石粉作混凝土掺合料的性能研究及机理分析. 博士学位论文, 中国建筑材料科学研究总院, 2010.
5 张倩倩, 张丽辉, 冉千平, 等. 建筑材料学报, 2019(5), 680.
6 姚燕, 高瑞军, 吴浩, 等. 建筑材料学报, 2019(6), 860.
7 杨俊. 机制砂生产排放的矿物细粉特性及其在混凝土中的应用研究. 硕士学位论文, 长安大学, 2017.
8 Feng H, Pan L, Zheng Q, et al.Construction and Building Materials, 2018, 170, 182.
9 姚楚康. 石粉特性对混凝土性能的影响研究. 硕士学位论文, 武汉理工大学, 2015.
10 马鸿文. 工业矿物与岩石, 化学工业出版社, 2011.
11 张翠, 王智, 王林龙, 等. 硅酸盐通报, 2013, 32(7), 1264.
12 肖佳, 吴婷, 何彦琪, 等. 硅酸盐通报, 2016, 35(3), 891.
13 刘锦涛. 机制砂与聚羧酸减水剂相容性及机理研究. 硕士学位论文, 北京建筑大学, 2019.
14 史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45, 1582.
15 Bonavetti V L, Rahhal V F, Irassar E F.Cement and Concrete Research, 2001, 31(6), 853.
16 Snellings R, Mertens G, Adriaens R, et al.Applied Clay Science, 2013, 72, 124.
17 谢友均, 陈小波, 马昆林, 等.铁道科学与工程学报, 2015, 12(1), 59.
18 刘数华, 冷发光, 李丽华.混凝土辅助胶凝材料, 中国建材工业出版社, 2010.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 宋少民, 王宇杰, 李统彬. 新型胶凝材料体系的抗裂性能[J]. 材料导报, 2021, 35(Z1): 206-210.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed