Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 198-205    
  无机非金属及其复合材料 |
氧化石墨烯水泥基复合材料的性能及研究进展
曾纪军1, 高占远1, 阮冬2
1 天津市土木建筑结构防护与加固重点实验室,天津 300384
2 澳大利亚斯威本科技大学科学、工程与技术学院,墨尔本 3000
Properties and Research Progress of Graphene Oxide Cement-based Composites
ZENG Jijun1, GAO Zhanyuan1, RUAN Dong2
1 Tianjin Key Laboratory of Civil Building Structure Protection and Reinforcement, Tianjin 300384, China
2 Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne 3000, Australia
下载:  全 文 ( PDF ) ( 5117KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料在建筑领域应用广泛,但其存在抗弯强度低、抗裂性和韧性差等缺点,因此改善水泥基材料性能一直是建筑材料领域研究的热点之一。氧化石墨烯(GO)是在石墨烯基面和边缘修饰了含氧官能团的一种二维衍生石墨烯材料,具有蜂窝状的结构形貌,亲水性、分散性和反应活性好。将GO加入水泥基材料中,可促进花状形貌晶体的形成,并加速水化进程的成核速度,使其形成致密的交联结构,进而细化水泥浆体的空隙,有效降低孔隙率, 从而增强水泥基材料的力学性能,但流动性等有所降低。因此研究人员主要从微观作用机理、静态力学性能及耐久性等方面开展了深入研究,并取得了丰硕的成果。
GO自身较大比表面积的结构性质致使水泥基复合材料流变性差,利用硅灰(SF)和氧化石墨烯包覆硅灰(GOSF)等外加剂对GO进行改性,从而提高GO水泥浆体的流动性。基于微观结构作用机理,对比不同GO掺量、试件尺寸、水灰比下的抗压强度和抗弯强度的增长率,分析GO水泥基复合材料的力学性能的增强机理。GO对水泥基材料抗压、抗拉、抗弯强度增长率存在较大差异,其中抗弯强度提高幅度最大。GO对硅酸盐水泥力学性能的提高程度较磷酸镁钾水泥更为显著。对于动态力学性能,不同应变率下裂纹扩展路径存在差异,在高应变率下GO的增强效应更为显著。水泥基材料工作环境中各类离子化合物及酸碱度对其基体有消极的影响,GO对其耐久性有明显的提高作用。
本文对近年来GO水泥基复合材料的研究状况进行梳理,分析其微观结构作用机理、流动性、力学性能及耐久性等,阐述了目前国内外的研究状况及存在的问题,并展望了GO水泥基复合材料未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾纪军
高占远
阮冬
关键词:  氧化石墨烯  水泥基复合材料  微观作用机理  流动性  力学性能    
Abstract: Cement based materials are widely used in the construction field, while they have the disadvantages of low flexural strength, poor crack resistance and toughness. Therefore improving the properties of cement based materials has always been one of the research hotspots in the field of building materials. Graphene oxide (GO) is a two-dimensional derived graphene material modified with oxygen-containing functional groups on the base and edge of graphene. It has honeycomb-like structural morphology, good hydrophilicity, dispersion and reactivity. The GO to cement-based materials can facilitate the formation of flower-like morphology crystals, accelerate the nucleation rate of hydration process, and make it form a dense cross-linked structure, and subsequently refine the voids of cement paste. Thus, the mechanical properties of cement-based materials are enhanced, while the fluidity is reduced. Therefore, the previous researchers mainly investigated the microscopic mechanism of action, quasi-static mechanical properties and durability and other aspects, and achieved fruitful results.
The structural properties of GO with large specific surface area lead to poor rheological properties of cement-based composites. The GO is mo-dified by admixture such as silica fume (SF) and graphene oxide encapsulated silica fume (GOSF). Thus, the fluidity of GO cement paste is improved. Based on the mechanism of microscopic structure, the strength enhancement mechanism of GO cement composites and the effects of GO content, specimen size and water-cement ratio on the compressive and flexural strengths are analyzed. The increase rate of compressive strength, tensile strength and flexural strength of cement-based materials is different with the addition of GO, and the enhancement of flexural strength is the largest. It has been found that GO improves the mechanical properties of Portland cement more significantly than that of the magnesium potassium phosphate cement paste. For the dynamic mechanical properties, the crack growth path is different at different strain rates, and the enhancement effect GO at high strain rates is more significant. In the working environment of cement-based materials, various ionic compounds and pH have a negative effect on the matrix. GO can significantly improve the durability of its cement composites.
The research status of GO cement-based composites in recent years is reviewed in this paper. Microstructure mechanism, fluidity, mechanical properties and durability of GO cement matrix composites are summarized. The current domestic and overseas research progress and existing problems are expounded. Moreover, the future development of GO cement-based composites is prospected.
Key words:  graphene oxide    cement-based composites    microscopic mechanism    fluidity    mechanical property
                    发布日期:  2021-07-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51708391);天津市自然科学基金(18JCYBJC22700;20JCQDJC00850)
通讯作者:  haifenglingyong@sina.com   
作者简介:  曾纪军,2018年6月毕业于山东协和学院,获得学士学位。现为天津城建大学土木工程学院硕士研究生。目前主要研究的领域为氧化石墨烯混凝土。高占远,天津城建大学土木工程学院讲师,2014年7月在北京工业大学建筑工程学院取得土木工程博士学位,2014—2016年在清华大学土木工程系进行博士后工作。主要从事石墨烯增强混凝土制备方法及静动力学性能研究。阮冬,教授,博士研究生导师,国际冲击学会副秘书长,现任职于澳大利亚斯威本科技大学科学、工程和技术学院。主要从事冲击动力学分析、动力学数值模拟以及实验方法等研究。
引用本文:    
曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
ZENG Jijun, GAO Zhanyuan, RUAN Dong. Properties and Research Progress of Graphene Oxide Cement-based Composites. Materials Reports, 2021, 35(Z1): 198-205.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/198
1 Kimball, Suzette M, Hutchinson,et al. Sea Technology, 2016, 57, 20.
2 Zhang T S, Gao P, Gao P H, et al. Resources Conservation and Recycling,2013, 74, 134.
3 Lu Z, Hou D, Ma H, et al.Construction and Building Materials, 2016, 119, 107.
4 Silvestre J, Silvestre N, Brito J D. European Journal of Environmental and Civil Engineering, 2015, 20, 455.
5 Chuah S, Pan Z, Sanjayan J G, et al.Construction and Building Mate-rials, 2014, 73, 113.
6 Imbabi M S, Carrigan C, Mckenna S, et al. International Journal of Sustainable Built Environment, 2012, 1, 194.
7 褚洪岩. 石墨烯改性牺牲混凝土制备、高温性能及与堆芯熔融物相互作用研究.博士学位论文,东南大学, 2017.
8 李亮, 吴文杰, 吴俊, 等. 建筑结构, 2018, 48(S1), 545.
9 Novoselov K S, Geim A K, Morozov S V, et al.Science, 2004, 306(5696), 666.
10 王宝民, 姜瑞双, 赵汝英.混凝土, 2016, 75(12), 68.
11 顾正彬, 季根华, 卢明辉.南京工业大学学报, 2010, 32(3), 105.
12 Sun Y, Wu Q, Shi G.Energy and Environmental Science, 2011, 4, 1113.
13 Tombros N, Veligura A, Junesch J, et al.Journal of Applied Physics, 2011, 109(9), 093702.
14 Balandin A A, Ghosh S, Bao W, et al.Nano Letters, 2008, 8(3), 902.
15 Zou L, Wang S S, Qiu J.New Carbon Materials, 2020, 35(1), 12.
16 Chen S J, Li C Y, Wang Q, et al.Carbon, 2017, 114, 557.
17 Chuah S, Pan Z, Sanjayan J G, et al.Construction and Building Mate-rials, 2014, 73, 113.
18 Luong D X, Bets K V, Algozeeb W A, et al.Nature, 2020, 577(7792), 647.
19 Krishnamoorthy K, Veerapandian M, Yun K, et al.Carbon, 2013, 53(1), 38.
20 吕生华, 张佳, 罗潇倩, 等.材料研究学报, 2018, 32(3), 233.
21 袁小亚, 曾俊杰, 高军,等.重庆交通大学学报, 2019, 38(9), 45.
22 郭霞飞, 孟聪颖, 赵发琼, 等.分析化学, 2019, 47(2), 214.
23 莫佳伟, 裘银伟, 伊若冰, 等. 物理学报, 2019, 68(15), 278.
24 Li X, Korayem A H, Li C, et al. Construction and Building Materials, 2016, 123, 327.
25 Mohd-Zubir M N, Badarudin A, Kazi S N, et al. Journal of Dispersion Science and Technology, 2015, 37, 1395.
26 张松磊,何明胜,王优群,等.硅酸盐通报, 2019, 38(10), 3093.
27 Al-Saadi N T K, Mohammed A, Al-Mahaidi R.Construction and Building Materials, 2018, 162(20), 523.
28 苏慈, 田晓霞, 曾田胜.混凝土, 2009,(11), 120.
29 杜向琴, 刘志龙.混凝土, 2018(4), 91.
30 Mehdipour I, Mohammad V, Nicolas A L. Magazine of Concrete Research, 2013, 65, 1011.
31 Ali M, Chouw N.Construction and Building Materials, 2013, 41, 681.
32 Karen L, Patrick J, Paulo J M. Cement and Concrete Research, 2015, 78, 38.
33 Lu Z, Zhang J, Sun G, et al. Energy, 2015, 82, 43.
34 Lura P, Chanvillard G, Griffa M, et al. Cement and Concrete Research, 2015, 78, 234.
35 Lyu S H, Liu J, Sun T, et al. Construction and Building Materials, 2014, 64, 231.
36 Wang Q, Wang J, Lu C,et al.New Carbon Materials, 2015, 30(4), 349.
37 吕生华, 胡浩岩, 孙立, 等.精细化工, 2019, 36(3), 407.
38 吕生华, 马宇娟, 邱超超, 等.混凝土, 2013, 9(8), 51.
39 Li X, Li C, Liu Y, et al.Mechanics of Advanced Materials and Structures, 2016, 25, 1313.
40 Li X Y, Asghar H K, Li C Y, et al. Construction and Building Materials, 2016, 123, 327.
41 Hou D, Yang T.Physical Chemistry Chemical Physics, 2018, 20(16), 11053.
42 Wang M, Wang R, Yao H, et al.Construction and Building Materials, 2016, 126, 730.
43 Li X, Liu Y M, Li W G, et al.Construction and Building Materials, 2017, 145, 402.
44 王琴, 王健, 吕春祥, 等.新型炭材料, 2015, 30(4), 349.
45 Lin C, Wei W, Hu Y H.Journal of Physics and Chemistry of Solids, 2016, 89, 128.
46 Yang H B, Monasterio M, Cui H Z, et al. Applied Science and Manufacturing, 2017,102, 263.
47 Lv S H, Cui Y Y, Zhou Q F, et al. Magazine of Concrete Research, 2015, 68(4), 187.
48 Shang Y, Zhang D, Yang C, et al. Construction and Building Materials, 2015, 96, 20.
49 张则瑞, 吴建东, 杨敬斌, 等.材料导报, 2019, 33(S2), 240.
50 刘春燕. 氧化石墨烯水泥基材料性能及其应用研究. 博士学位论文, 西安建筑科技大学, 2017.
51 Wang Q, Cui X, Wang J, et al.Construction and Building Materials, 2017, 138, 35.
52 Pan Z, He L, Qiu L, et al.Cement and Concrete Composites, 2015, 58, 140.
53 Jiang R S, Wang B M.Key Engineering Materials, 2017, 748, 295.
54 武星星, 刘志芳, 王志勇, 等.应用力学学报, 2018, 35(6), 1333.
55 Li C Y, Chen S J, Li W G, et al.Construction and Building Materials, 2019, 206(10), 694.
56 Murugan M, Santhanam M, Gupta S S, et al.Cement and Concrete Composites, 2016, 70, 48.
57 Gholampour A, Valizadeh K M, Tran D N H, et al.ACS Applied Materials and Interfaces, 2017, 9(49), 43275.
58 Lu Z, Hou D, Meng L, et al.RSC Advances, 2015, 5(122), 100598.
59 Babak F, Abolfazl H, Alimorad R, et al.The Scientific World Journal, 2013, 2014(4), 276323.
60 高党国, 马宇娟.精细化工, 2015, 32(1), 103.
61 Zhao L, Guo X, Ge C, et al.Construction and Building Materials, 2016, 113(15), 470.
62 Zhao L, Guo X, Ge C, et al.Composites, 2017, 113, 308.
63 Gong K, Pan Z, Korayem A H, et al.Journal of Materials in Civil Engineering, 2015, 27(2), A4014010.
64 Lu Z Y, Hou D S, Ma H Y, et al. Construction and Building Materials, 2016, 119, 107.
65 徐义洪, 范颖芳.混凝土与水泥制品, 2019(5), 9.
66 张友来. 氧化石墨烯/硅烷复合乳液的制备及其对混凝土耐久性能的影响研究.硕士学位论文, 青岛理工大学, 2018.
67 杨雅玲, 袁小亚, 沈旭, 等.功能材料, 2017, 48(5), 5144.
68 薛立强.科学技术与工程, 2017, 17(22), 129.
69 曾鞠庆. 掺入纳米氧化石墨烯水泥基复合材料体积稳定性研究. 硕士学位论文, 江苏科技大学, 2019.
70 Liu Q, Xu Q F, Yu Q, et al. Construction and Building Materials, 2016, 127, 565.
71 Mohammed A, Al-Saadi N T K, Sanjayan J.Australian Journal of Civil Engineering, 2018, 16(4), 81.
72 Lerf A, He H Y, Forster M, et al. Journal of Physical Chemistry B, 1998, 102(23), 4477.
73 张迪, 梁颖晶.混凝土, 2019(12), 37.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[3] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[4] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[5] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[6] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[7] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[8] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[9] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[10] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[11] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[12] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[13] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[14] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[15] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed