Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19142-19152    https://doi.org/10.11896/cldb.20070054
  金属与金属基复合材料 |
铜及其合金表面涂层技术与增材制造技术研究进展
王荣城1,2, 王文宇2, 殷凤仕3, 任智强2, 常青2, 赵阳2, 秦智勇4
1 山东理工大学化学化工学院,淄博 255000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 山东理工大学机械工程学院,淄博 255000
4 陆军装甲兵学院陆军装备部信息保障室,北京 100072
Research Progress of Copper and Its Alloys Surface Coating Technology and Additive Manufacturing Technology
WANG Rongcheng1,2, WANG Wenyu2, YIN Fengshi3, REN Zhiqiang2, CHANG Qing2, ZHAO Yang2, QIN Zhiyong4
1 School of Chemistry and Chemical Engineering, Shandong University of Technology,Zibo 255000, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
4 Armament Department of the Army Information Assurance Room, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 7404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜及其合金具有优良的耐腐蚀、导电导热性能及机械加工性能,广泛应用于电气、轻工、机械制造等领域。随着生产条件的不断优化,为同时满足不同的应用需求,人们期望获得综合性能更加优良或某一性能特别突出的零部件,但传统制造加工方法工艺复杂,且生产过程中材料利用率较低,存在很大的局限性。为实现零件表面合金化,改善零件表面性能缺陷,表面涂层技术被开发并广泛应用;为实现复杂结构零件的成形,人们开发了增材制造技术。铜合金增材制造技术通过逐层累积的方法,可以高效快速地制造出各类精密零部件,不仅使合金材料利用率高,还能够满足各种结构复杂零部件的成形需求,是当下铜合金应用的研究热点。近年来,国内外研究人员利用铜合金涂层改善零件表面性能的主要技术有沉积、热喷涂、冷喷涂等,对铜合金增材制造技术的研究主要集中在激光增材制造技术,从工艺优化到组织性能分析,都对未来的研究提供了很大的理论依据,但对电子束增材、电弧增材等其他增材制造技术的关注比较少,对于铜合金增材制造过程中成分均匀化的热处理工艺及增材后具备优良的导电、导热、致密度等问题有待进一步研究。
本文归纳了铜合金表面涂层以及增材制造技术的工艺原理及研究现状,通过对比各类不同增材制造方法,分析了各增材制造技术工艺参数对成形件微观组织及力学性能的影响,对各技术所获得成形件的优缺点进行总结,并对未来铜合金增材制造重点关注方向进行展望,为制备性能更优良的铜合金成形件以及工艺应用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王荣城
王文宇
殷凤仕
任智强
常青
赵阳
秦智勇
关键词:  增材制造  工艺优化  热处理  微观组织  力学性能    
Abstract: Copper and its alloys have excellent corrosion resistance, electrical and thermal conductivity and mechanical processing properties, and are widely used in electrical, light industry, machinery manufacturing and other fields. With the continuous optimization of production conditions and meeting different application requirements at the same time, people expect to obtain parts with better overall performance or a particular performance, but the traditional manufacturing and processing methods are complex and the material utilization rate in the production process is low, there are great limitations. In order to realize the surface alloying of parts and improve the surface performance defects of parts, surface coating technology has been developed and widely used; in order to realize the forming of complex structural parts, people have developed additive manu-facturing technology. Copper alloy additive manufacturing technology can efficiently and quickly manufacture various types of precision parts through a layer-by-layer accumulation method. It not only has a high utilization rate of alloy materials, but also can meet the forming needs of various complex parts. It is the current copper alloy application research hotspots. In recent years, domestic and foreign researchers have used copper alloy coatings to improve the surface properties of parts with deposition, thermal spraying, cold spraying, etc. The research on copper alloy additive manufacturing technology mainly focuses on laser additive manufacturing technology, from process optimization, the analysis of the organization and performance provides a great theoretical basis for future research, but there is less attention to other additive manufacturing technologies such as electron beam additive and arc additive, and the composition is uniform in the copper alloy additive manufacturing process. The heat treatment process, and the excellent electrical conductivity, thermal conductivity, and density of the additive need to be further studied.
This article summarizes the process principle and research status of copper alloy surface coating and additive manufacturing technology. By comparing various additive manufacturing methods, the influence of various additive manufacturing technology process parameters on the microstructure and mechanical properties of the formed part is analyzed. The advantages and disadvantages of the formed parts obtained by each technology are summarized, and the future focus of copper alloy additive manufacturing is prospected, which lays the foundation for the preparation of copper alloy formed parts with better performance and process applications.
Key words:  additive manufacturing    process optimization    heat treatment    microstructure    mechanical properties
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TG146  
基金资助: 国家重点研发计划(2018YFB1105800);基础加强计划(2019-JCJQ-ZD-126)
通讯作者:  zhaoyang033@163.com; chang2008qing@163.com   
作者简介:  王荣城,2017年毕业于山东理工大学,获得学士学位,现为山东理工大学研究生。主要研究领域为铜合金增材制造。
赵阳,1983年生,博士,助理研究员。研究方向为铜合金增材制造及表面强化。
常青,1987年生,硕士,助理研究员。研究方向为表面工程和再制造工程。
引用本文:    
王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
WANG Rongcheng, WANG Wenyu, YIN Fengshi, REN Zhiqiang, CHANG Qing, ZHAO Yang, QIN Zhiyong. Research Progress of Copper and Its Alloys Surface Coating Technology and Additive Manufacturing Technology. Materials Reports, 2021, 35(19): 19142-19152.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070054  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19142
1 Li Y H,Wang Z, Zhao H, et al. Journal of Shenyang Ligong University, 2019, 38(6), 22(in Chinese).
李玉海, 王震, 赵晖, 等. 沈阳理工大学学报, 2019, 38(6), 22.
2 Timo Rautio, Atef Hamada, Jani Kumpula, et al. Surface and Coatings Technology, 2020, 403, 126426.
3 Gabriele Baiocco, Gianluca Rubino, Nadia Ucciardello. Surfaces and Interfaces, 2020, 20, 100625.
4 Anja Buchwalder, Rolf Zenker. Surface & Coatings Technology, 2019, 375, 920.
5 Adrián Uriondo, Manuel Esperon-Miguez, Suresh Perinpanayagam. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2015, 229(11), 2132.
6 Deng H B, Chen Y H, Chen W, et al. Journal of Netshape Forming Engineering, 2018, 10(5), 95(in Chinese).
邓怀波, 陈玉华, 陈伟, 等. 精密成形工程, 2018, 10(5), 95.
7 Wang S, Song S L. Scientific and Technological Innovation, 2020(17),170(in Chinese).
王硕, 宋胜利. 科学技术创新, 2020(17),170.
8 Jawade S A, Joshi R S, Desai S B. Materials Today: Proceedings, 2020, doi: 10.1016/j.matpr.2020.02.096.
9 Bandyopadhyay A, Bose S, et al. Additive Manufacturing, Chemical Rubber Company Press, USA, 2016.
10 Andreas Gebhardt. Understanding additive manufacturing, Hanser-Garden Publication, Germany, 2011.
11 Huang Y J, Liu J H, Yang J H, et al. China Metallurgy, 2019, 29(11), 6(in Chinese).
黄永建, 刘军会, 杨进航, 等. 中国冶金, 2019, 29(11), 6.
12 Niu Y H. Technology Wind, 2020(13), 161(in Chinese).
牛燕辉. 科技风, 2020(13), 161.
13 Nathan C Ou, Su Xiaoming, Duane C Bock. Coordination Chemistry Reviews, 2020, 421, 213459.
14 Anjana Devi. ‘Old Chemistries' for new applications: perspectives for development of precursors for MOCVD and ALD applications, Coordination Chemistry Reviews, Germany, 2013.
15 Deng Y, Chen W L, Li B X, et al. Ceramics International, 2020, 46(11), 18373.
16 John Arkwright, Ian Underhill, Nathan Pereira, et al. Optics Express, 2005, 13(7), 2731.
17 Hu C Y, Li J H. Rare Metal, 2001, 25(5), 364(in Chinese).
胡昌义, 李靖华. 稀有金属, 2001, 25(5), 364.
18 Guo Z, Sang L J, Wang Z D, et al. Surface and Coatings Technology, 2016, 307, 1059.
19 Pierre Lassègue, Laure Noé, Marc Monthioux, et al. Surface and Coa-tings Technology, 2017, 331, 129.
20 Jiao X X, Sang K Z, Wang F, et al. Hot Working Technology, 2017, 46(6), 135(in Chinese).
焦星星, 桑可正, 王凡, 等. 热加工工艺, 2017, 46(6), 135.
21 Prud'homme N, Constantoudis V, Turgambaeva A E, et al. Thin Solid Films, 2020, 701, 137967.
22 Zhang X F, Zhou K S, Song J B, et al. Journal of Inorganic Materials, 2015, 30(3), 287(in Chinese).
张小锋, 周克崧, 宋进兵, 等. 无机材料学报, 2015, 30(3), 287.
23 Wang C X. Value Engineering. 2020, 39(12), 236(in Chinese).
王晨曦. 价值工程, 2020, 39(12), 236.
24 Pedro Salazar, Victor Rico, Rafael Rodríguez-Amaro, et al. Electrochimica Acta, 2015, 169, 195.
25 Salazar P, Rico V, González-Elipe A R. Sensors and Actuators B: Chemical, 2016, 226, 436.
26 Liu X Y, Daw M S, Kress J D, et al. Thin Solid Films, 2002, 422(1-2), 141.
27 Kumar K K, Mukherjee S. Thin Solid Films, 2008, 516(14), 4535.
28 Qian Y C, Tan J, Liu Q Q, et al. Surface and Coatings Technology, 2011, 205(15), 3909.
29 Long Q, Lu F H, Luo X, et al. Hydrometallurgy of China, 2018, 37(3), 179(in Chinese).
龙琼, 路坊海, 罗勋, 等. 湿法冶金, 2018, 37(3), 179.
30 Liu J G, Fang X T, Zhu C Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498.
31 Walsh F C, Wang S C, Zhou N. Current Opinion in Electrochemistry, 2020, 20, 8.
32 Hadi Khani, David O Wipf. Acs Applied Materials & Interfaces, 2017, 9, 6967.
33 Xie F Z, Wang G F, Zheng Y L. Applied Science and Technology, 2001(1), 1(in Chinese).
谢辅洲, 王桂芳, 郑玉丽. 应用科技, 2001(1), 1.
34 Subramanian B, Mohan S, Jayakrishnan S. Surface and Coatings Technology, 2006, 201(3-4), 1145.
35 Zhao Z X, Zeng P, Xie G R, et al. Electroplating & Finishing, 2015, 34(11), 595(in Chinese).
赵仲勋, 曾鹏, 谢光荣, 等. 电镀与涂饰, 2015, 34(11), 595.
36 Zhang W Q, Li Y Y, Chen Q R, et al. Journal of Xuchang University, 2017, 36(2), 64(in Chinese).
张万强, 李圆圆, 陈全入, 等. 许昌学院学报, 2017, 36(2), 64.
37 Lan L, Tan J, Du J, et al. China Mechanical Engineering, 2015, 26(9), 1260(in Chinese).
兰龙, 谭俊, 杜军, 等. 中国机械工程, 2015, 26(9), 1260.
38 Cui R H, Yu Z M, He Y T, et al. Corrosion Science and Protection Technology, 2010, 22(3), 169(in Chinese).
崔荣洪, 于志明, 何宇廷, 等. 腐蚀科学与防护技术, 2010, 22(3), 169.
39 Cui R H, Yu Z M, He Y T, et al. Journal of Chinese Society for Corrosion and Protection, 2011, 31(2), 145(in Chinese).
崔荣洪, 于志明, 何宇廷, 等. 中国腐蚀与防护学报, 2011, 31(2), 145.
40 Li L, Wang F F, Yin F S, et al. Modern Manufacturing Engineering, 2012(10), 11(in Chinese).
李丽, 王飞飞, 殷凤仕, 等. 现代制造工程, 2012(10), 11.
41 Wang F L, Zeng P, Wang Y, et al. Microelectronic Engineering, 2017, 180, 30.
42 Li B S, Mei T Y, Li D D, et al. Ultrasonics Sonochemistry, 2019, 58, 104680.
43 Liu N N, Wu M H, Li Z, et al. Rare Metal Materials and Engineering, 2013, 42(3), 649(in Chinese).
刘娜娜, 吴蒙华, 李智, 等. 稀有金属材料与工程, 2013, 42(3), 649.
44 Huang Q S, Zhong Y B, Ren Z M, et al. Rare Metal Materials and Engineering, 2006(S2), 381(in Chinese).
黄琦晟, 钟云波, 任忠鸣, 等. 稀有金属材料与工程, 2006(S2), 381.
45 Hisayoshi Matsushima, Andreas Bund, Waldfried Plieth, et al. Electrochimica Acta, 2007, 53(1), 161.
46 Denise Yin, Heather A. Murdoch, B.et al. Electrochemistry Communications, 2019(98), 96.
47 Zhao Y P. Fundamental research on rapid prototyping nanocrystalline copper oriented by jet electroforming. Master's Thesis, Nanjing University of Aeronautics & Astronautics, China, 2005(in Chinese).
赵阳培. 射流电铸快速成型纳米晶铜工艺基础研究. 硕士学位论文, 南京航空航天大学, 2005.
48 Zhao Y P, Ge S R, Zhang J W, et al. Materials for Mechanical Enginee-ring, 2008(1), 37(in Chinese).
赵阳培, 葛世荣, 张君伟, 等. 机械工程材料, 2008(1), 37.
49 Cai H T, Jiang T, Zhou Y. Equipment Manufacturing Technology, 2014(6), 28(in Chinese).
蔡宏图, 江涛, 周勇. 装备制造技术, 2014(6), 28.
50 Miao Y B, Zhu H Y, Gao P F, et al. Journal of Materials Research and Technology, 2020, Doi: 10.1016/j.jmrt.2020.10.006.
51 Zhou C J, Zhu S, Wang X M, et al. Materials Review, 2018, 32(19), 3444(in Chinese).
周超极, 朱胜, 王晓明, 等. 材料导报, 2018, 32(19), 3444.
52 Wu T, Zhu L, Li J, et al. Heat Treament of Metals Abroad, 2005(4), 2(in Chinese).
吴涛, 朱流, 郦剑, 等. 国外金属热处理, 2005(4), 2.
53 Li C L, Li W G, Zhao Y T, et al. Materials for Mechanical Engineering, 2020, 44(5), 60(in Chinese).
李成龙, 李文戈, 赵远涛, 等. 机械工程材料, 2020, 44(5), 60.
54 Valencia V T, Pawłowski L, Lecomte-Nana G, et al. Surface and Coa-tings Technology, 2020, 397, 126059.
55 Sun L Li, Liu X K, Liu P, et al. Hot Working Technology, 2015, 44(16), 194(in Chinese).
孙联雷, 刘新宽, 刘平, 等. 热加工工艺, 2015, 44(16), 194.
56 Yang L P. Light Metals, 2016(8), 51(in Chinese).
杨林鹏. 轻金属, 2016(8), 51.
57 Guo L J, Peng J, Wang H Q, et al. Journal of Alloys and Compounds, 2017, 703, 560.
58 Atul Ranjan, Aminul Islam, Manabendra Pathak, et al. Vacuum, 2019, 168, 108834.
59 Song W H, Zhang H W. Cleaning World,2020,36(4),50(in Chinese).
宋文辉, 张慧武. 清洗世界, 2020, 36(4), 50.
60 Qiu M K, Zhang S L, Zhang Y R, et al. Hot Working Technology, 2018, 47(20), 13(in Chinese).
邱明坤, 张树玲, 张燕然, 等. 热加工工艺, 2018, 47(20), 13.
61 Gu X B, Yang D M. Journal of East China Shipbuilding Institute, 1997(3), 29(in Chinese).
顾晓波, 杨大明. 华东船舶工业学院学报, 1997(3), 29.
62 Jiang L, Wang H G, Hou G L, et al. Ordnance Material Science and Engineering, 2005(2), 48(in Chinese).
江礼, 王汉功, 侯根良, 等. 兵器材料科学与程, 2005(2), 48.
63 Jiang L, Yuan X J, Wang H G, et al. Materials Protection, 2007(12), 10(in Chinese).
江礼, 袁晓静, 王汉功, 等. 材料保护, 2007(12), 10.
64 Zhu S, Zhou C J, Wang X M, et al. Journal of Mechanical Engineering, 2016, 52(8), 119(in Chinese).
朱胜, 周超极, 王晓明, 等. 机械工程学报, 2016, 52(8), 119.
65 Zhou C J, Wang X M, Zhu S, et al. China Surface Engineering, 2017, 30(3), 66(in Chinese).
周超极, 王晓明, 朱胜, 等.中国表面工程, 2017, 30(3), 66.
66 Li S L. Hebei Agricultural Machinery, 2017(7), 33(in Chinese).
李帅伦. 河北农机, 2017(7), 33.
67 Daram P, Munroe P R, Banjongprasert C. Surface and Coatings Techno-logy, 2020, 391, 125565.
68 Tian H L, Wang C L, Guo M Q, et al. Surface and Coatings Technology, 2019, 370, 320.
69 Huang Z, Zhang H, Zhang Y L. Valve, 2005(1), 14(in Chinese).
黄召, 张虎, 张彦雷. 阀门, 2005(1), 14.
70 Liu J K, Su X Y. Surface Technology, 2016, 45(9), 134(in Chinese).
刘基凯, 苏新勇. 表面技术, 2016, 45(9), 134.
71 Fang L J, Huang J, Liu Y, et al. Surface and Coatings Technology, 2019, 357, 794.
72 Su G X, Zhou L, Wang L J, et al. Hot Working Technology, 2018, 47(22), 7(in Chinese).
苏革新, 周亮, 王利捷, 等. 热加工工艺, 2018, 47(22), 7.
73 Hwasung Yeom, Kumar Sridharan. Annals of Nuclear Energy, 2021,150, 107835.
74 Hamid Assadi, Frank Gärtner, Acta Materialia, 2003, 51(15), 4379.
75 Zheng J X, Jin Y H, Liu C S. Surface Technology, 2013, 42(1), 5(in Chinese).
郑建新, 金耀辉, 刘传绍. 表面技术, 2013, 42(1), 5.
76 Yin Shuo, Richard Jenkins, Yan Xingchen, et al. Materials Science and Engineering: A, 2018, 734, 67.
77 Yang K, Li W Y, Guo X P, et al. Journal of Materials Science & Technology, 2018, 34(9), 1570.
78 Hu K W, Li W Y, Yang X W, et al. Journal of Netshape Forming Engineering, 2019, 11(6), 154(in Chinese).
胡凯玮, 李文亚, 杨夏炜, 等. 精密成形工程, 2019, 11(6), 154.
79 Zhang W P, Ma H B. Materials for Mechanical Engineering, 2009, 33(9), 6(in Chinese).
张维平, 马海波. 机械工程材料, 2009, 33(9), 6.
80 Hu M J, Ji L K, Ma Q R, et al. Petroleum Tubular Goods & Instruments, 2019, 5(5), 1(in Chinese).
胡美娟, 吉玲康, 马秋荣, 等. 石油管材与仪器, 2019, 5(5), 1.
81 Yan X C, Yin S, Chen C Y, et al. Materials Research Letters, 2019,7(8), 327.
82 Griffith M L, Schlienge M E, Hawell L D, et al. Materials & Design, 1999, 20(2-3), 107.
83 Zhang W, Yao J H, Hu X D, et al. Manufacturing Automation, 2008(2), 4(in Chinese).
张伟, 姚建华, 胡晓冬, 等. 制造业自动化, 2008(2), 4.
84 Dong S Y, Xu B S, Liang X B, et al. China Surface Engineerign, 2001(4), 15(in Chinese).
董世运, 徐滨士, 梁秀兵, 等. 中国表面工程, 2001(4), 15.
85 Dong S Y, Zhang X H, He X D, et al. Journal of Harbin Ins Titute of Technology, 2003, 35(2), 33(in Chinese).
董世运, 张幸红, 赫晓东, 等. 哈尔滨工业大学学报, 2003, 35(2), 33.
86 Dong S Y, Han J C, Wang M C, et al. Heat Treatment Of Metals, 2000(3), 1(in Chinese).
董世运, 韩杰才, 王茂才, 等. 金属热处理, 2000(3), 1.
87 Yu M F, Deng Q L, Ge Z J, et al. Electromachining & Mould, 2007(4), 31(in Chinese).
余民芳, 邓琦林, 葛志军, 等. 电加工与模具, 2007(4), 31.
88 Ge Z J, Deng Q L, Song J L, et al. Electromachining & Mould, 2007(1), 39(in Chinese).
葛志军, 邓琦林, 宋建丽, 等. 电加工与模具, 2007(1), 39.
89 Zhang Y Z, Jin J T, Tu Y, et al. Heat Treatment of Metals, 2009, 34(4), 28(in Chinese).
张永忠, 金具涛, 涂义, 等. 金属热处理, 2009, 34(4), 28.
90 Scott M Thompson, Linkan Bian, Nima Shamsaei, et al. Additive Manufacturing, 2015, 8, 32.
91 Huang J, Yan X C, Chang C, et al. Surface and Coatings Technology, 2020, 395, 125936.
92 Chang C, Yan X C, Rodolphe B, et al. Journal of Materials Science, 2020, 55, 8303.
93 Zhao Z G, Bo L, Li L, et al. Aeronautical Manufacturing Technology, 2014(19), 46(in Chinese).
赵志国, 柏林, 李黎, 等. 航空制造技术, 2014(19), 46.
94 Chen D H, Haneen D, Florian S, et al. Journal of Materials Research and Technology, 2020, 9(4), 8314.
95 Popovich A, Sufiiarov V, Polozov I, et al. Materials Letters, 2016, 179, 38.
96 Tan C L, Zhou K S, Ma W Y, et al. Materials & Design, 2018, 155, 77.
97 Yi L L, Mao Z F, Zhang Z W. Journal of Sichuan University (Natural Science Edition), 2019, 56(4), 689(in Chinese).
易力力, 毛忠发, 张正文. 四川大学学报(自然科学版), 2019, 56(4), 689.
98 Sohei Uchida, Takahiro Kimura, Takayuki Nakamoto, et al. Materials & Design, 2019, 175, 107815.
99 Wang P, Deng L, Prashanth K G, et al. Journal of Alloys and Compounds, 2018, 735, 2263.
100 Tan Z, Zhang X Y, Zhou Z L, et al. Journal of Alloys and Compounds, 2019, 787, 903.
101 Wang J B, Zhou X L, Li J H,et al. Additive Manufacturing, 2020, 31, 100921.
102 Jiang M, Qi H B, Lin F. Machinery Design & Manufacture, 2008(1), 189(in Chinese).
姜明, 齐海波, 林峰. 机械设计与制造, 2008(1), 189.
103 Xing X X, Pan L H, Wang Y, et al. Welding & Joining, 2016(7), 22(in Chinese).
邢希学, 潘丽华, 王勇, 等. 焊接, 2016(7), 22.
104 Soroush Momeni, Ralf Guschlbauer, Fuad Osmanlic, et al. Materials Letters, 2018, 223, 250.
105 Ralf Guschlbauer, Soroush Momeni, Fuad Osmanlic, et al. Materials Characterization, 2018, 143, 163.
106 Torsten Wolf, Fu Zongwen, Carolin Körner. Materials Letters, 2019, 238, 241.
107 Huang K, Zhang C S, Zhao Y, et al. Die & Mould Manufacture, 2019, 19(3), 86(in Chinese).
黄柯, 张昌松, 赵阳, 等. 模具制造, 2019, 19(3), 86.
108 Hauser T, Da Silva A, Reisch R T, et al. Journal of Manufacturing Processes, 2020, 56, 1088.
109 Dhinakaran V, Ajith J, Fahmidha A F Y, et al. Materials Today: Proceedings, 2020, 21, 920.
110 Sudhanshu Ranjan Singh, Pradeep Khanna. Materials Today: Procee-dings, 2020. Doi: 10.1016/j.ccr.2020.213459.
111 Guo C, Ma M L, Hu R Z, et al. Materials Reports, 2019, 33(S2), 455(in Chinese).
郭纯, 马明亮, 胡瑞章, 等. 材料导报, 2019, 33(S2),455.
112 Chen J, Liu X P, Liang H. Heat Treatment of Metals, 2010, 35(9), 98(in Chinese).
陈健, 刘雪飘, 梁欢. 金属热处理, 2010, 35(9), 98.
113 Wu B T, Pan Z X, Ding D H,et al. Journal of Manufacturing Processes, 2018, 35, 127.
114 An F P, Li J Q, Jiang P, et al. Development and Application of Mate-rials, 2019, 34(4), 78(in Chinese).
安飞鹏, 李嘉琪, 蒋鹏, 等. 材料开发与应用, 2019, 34(4), 78.
115 Liu L, Zhuang Z, Liu F, et al. International Journal of Advanced Manufacturing Technology, 2013, 69(9), 2131.
116 Dong B, Pan Z, Shen C, et al. Metallurgical & Materials Transactions B, 2017, 48(6), 1.
117 Wen T T, Chen Y H, Chen W, et al. Journal of Netshape Forming Engineering, 2019, 11(5), 149(in Chinese).
温涛涛, 陈玉华, 陈伟, 等. 精密成形工程,2019, 11(5), 149.
118 Chen W, Huang L B, Chen Y H, et al. Journal of Netshape Forming Engineering, 2018, 10(5), 81(in Chinese).
陈伟, 黄龙彪, 陈玉华, 等. 精密成形工程, 2018, 10(5), 81.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[10] 吴长军, 姚利丽, 周志嵩, 薛烽, 朱晨露. 钢件双镀ZAM合金镀层的组织及耐蚀性[J]. 材料导报, 2021, 35(Z1): 434-437.
[11] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[12] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[13] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[14] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[15] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed