Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 612-617    
  高分子与聚合物基复合材料 |
水固化型聚合物改性乳化沥青混合料性能研究
张庆1,2, 侯德华1,3, 刘廷国1,3
1 河南省高等级公路检测与养护技术重点实验室,新乡453003
2 河南师范大学化学化工学院,新乡 453007
3 河南省高远公路养护技术有限公司,新乡453003
Study on Mechanical Properties of Water-curable Polymer Modified Emulsified Asphalt Mixture
ZHANG Qing1,2, HOU Dehua1,3, LIU Tingguo1,3
1 Henan Province Key Laboratory of Highgrade Highway Detection and Maintenance Technology, Xinxiang 453003, China
2 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
3 Henan Gaoyuan Highway Maintenance Technology Co., Ltd., Xinxiang 453003, China
下载:  全 文 ( PDF ) ( 4113KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高常温拌合乳化沥青混合料的工作性能和路用性能,采用拌合试验、劈裂试验及间接拉伸疲劳试验研究了水固化型聚氨酯预聚体改性乳化沥青混合料的拌合和易性及力学性能。试验表明,水固化型聚氨酯预聚体改性乳化沥青混合料具有良好的拌合和易性,以及优于SBR改性乳化沥青混合料的拌和效果,同时水固化型聚氨酯预聚体的加入也有利于乳化沥青破乳后混合料早期强度的形成,从而提高乳化沥青混合料的早期劈裂强度及水稳定性。此外,为使该沥青混合料具有良好的抗疲劳性能,推荐聚氨酯预聚体改性材料的掺量为总用水量的40%~50%。研究表明,临界应变能密度与抗疲劳评价指标具有显著的相关性,在有限的试验条件下,可以通过综合力学性能评价指标(临界应变能密度)可以快速分析乳化沥青混合料的抗裂能力及抗疲劳性能,有利于指导室内评价研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张庆
侯德华
刘廷国
关键词:  乳化沥青混合料  水固化型聚氨酯预聚体  拌合试验  间接拉伸疲劳试验    
Abstract: In order to improve the working performance and road performance of emulsified asphalt mixture at room temperature,the mixing test, splitting test and indirect tensile fatigue test were used to study the mixing workability and mechanical properties of the water-curable polyurethane prepolymer modified emulsified asphalt mixture. Tests show that the water-curable polyurethane prepolymer modified emulsified asphalt mixture has good mixing, and better mixing effect than the SBR modified emulsified asphalt mixture. At the same time, the addition of water-curable polyurethane prepolymer is also conducive to the formation of early strength of emulsified asphalt mixture after demulsification, the early splitting strength and water stability of emulsified asphalt mixture are improved. In order to make it have good anti-fatigue performance, it is recommended that the amount of polyurethane prepolymer modified material is 40wt%—50wt% of the quality of asphalt. The research shows that the critical strain energy density has a significant correlation with the anti-fatigue evaluation index. Under the limited test environment, the comprehensive mechanical performance evaluation index critical strain energy density can quickly analyze the crack resistance of emulsified asphalt ability and anti-fatigue performance, it is helpful to guide indoor evaluation research.
Key words:  emulsified asphalt mixture    water-curable polyurethane prepolymer    mixing test    indirect tensile fatigue test
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  U414  
基金资助: 国家重点研发计划(2018YFE0120200);河南省创新示范专项(191110211500);新乡市重大科技专项(ZD19007)
通讯作者:  zhangqing666@vip.163.com   
作者简介:  张庆,工学博士,高级工程师,硕士研究生导师,公路养护装备国家工程实验室研究中心总工程师。2013年在长安大学获得博士学位,2016—2017年到加拿大滑铁卢大学进行学术访问、合作研究。其研究团队致力于依托材料科学与工程科学的交叉学科优势,从基础应用研究和技术开发出发,注重功能材料的微观结构调控与优化,围绕材料综合性能的提升,实现了工程功能材料一些关键技术的重要突破,有效提高了多种工程材料的性能及工艺水平。在SCI、EI、核心源期刊杂志发表文章多篇,获授权发明专利多项,主持承担多项重点科研项目,获得多项科技奖励荣誉。通过长期研究,建立了丰富的理论储备和多元的研发体系。
引用本文:    
张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
ZHANG Qing, HOU Dehua, LIU Tingguo. Study on Mechanical Properties of Water-curable Polymer Modified Emulsified Asphalt Mixture. Materials Reports, 2020, 34(Z2): 612-617.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/612
1 赵蓉龙, 李大鹏. 交通运输研究, 2008(4),91.
2 王志祥, 何创, 李建阁.石油沥青, 2015, 29(2),19.
3 季节,刘禄厚,索智,等.北京工业大学学报,2018,44(4),568.
4 李秀君,毕伟林,拾方治,等.重庆交通大学学报(自然科学版), 2018, 37(11),40.
5 Sheng X, Wang M, Xu T, et al. Construction and Building Materials, 2018, 189,375.
6 张庆,郝培文,白正宇.筑路机械与施工机械化, 2016(1),54.
7 张谦,王涵,毕治功.弹性体, 2019, 29(1),82.
8 陈利东,李璐,郝增.公路工程, 2013(2),218.
9 Chen Y, Li L, Xu L, et al. Journal of Applied Polymer Science, 2018, 135(22), 46334.
10 Calvo-Correas T, Santamaria-Echart A, Saralegi A, et al. European Polymer Journal, 2015, 70,173.
11 张丰雷, 凌晨, 王燚, 等. 功能材料, 2018, 49(2), 2183.
12 韩继成.聚氨酯(PU)改性乳化沥青制备及性能研究.硕士学位论文, 长安大学,2017.
13 Carrera V, Cuadri A A, García-Morales M, et al. Materials and Structures, 2015, 48(10), 3407.
14 陈俊,侯中新,黄晓明.公路交通科技, 2007(11),25.
15 褚建军,沈春林,康杰分.新型建筑材料, 2012(4),6.
16 Khoeini S, Dessouky S, Papagiannakis A T, et al. Construction and Building Materials, 2019, 204,177.
17 熊球兵,袁慎峰,尹红,等. 化工新型材料, 2011(S1),79.
18 易长海,甘厚磊,吴海燕,等.新型建筑材料, 2007, 34(2),62.
19 Kavussi A, Modarres A. Construction and Building Materials, 2010, 24(10), 1920.
[1] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[2] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[3] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[4] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[5] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[6] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[7] 王岚, 崔世超, 任敏达. 多聚磷酸复配SBS改性沥青微观结构特性评价[J]. 材料导报, 2019, 33(24): 4105-4110.
[8] 蓝群力, 张新天, 卞立波, 赵斌, 夏宇, 曹玉海. 高陡岩石边坡植被恢复组合结构与材料性能研究[J]. 材料导报, 2019, 33(Z2): 143-146.
[9] 张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(Z2): 247-253.
[10] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[11] 赵可成, 陈宇, 黄考取. 基于核壳结构缓释剂和抗氧化剂的新型复合沥青抗老化剂研究[J]. 材料导报, 2019, 33(Z2): 261-266.
[12] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[13] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[14] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[15] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed