Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 505-511    
  金属与金属基复合材料 |
利用熔融分步还原法优化铜渣贫化效果及渣型结构
孙雪玮1,2, 王杨1,2, 胡建杭1,2
1 冶金节能减排教育部工程研究中心, 昆明 650093;
2 昆明理工大学冶金与能源工程学院,昆明 650093
The Dilution Effect and Slag Shape Structure of Copper Slag Optimized by Melting Step Reduction Method
SUN Xuewei1, WANG Yang1,2, HU Jianhang1,2
1 Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093;
2 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2933KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据铜渣中物相成分及熔池熔炼过程工艺特点,对高温条件下熔融铜渣还原过程热力学以及实验过程进行了研究。传统的铜渣一步还原金属回收法,产物中往往得到大量金属合金,降低了熔渣中金属回收率,为避免还原程度控制不当生成金属合金,本实验采用分步还原法分别对铜渣中的有价金属铜、铁进行回收,分析了熔池温度、助熔剂CaO和还原剂炭粉添加量对渣还原贫化过程中贫化效果的影响,掌握了还原过程中渣结构的类型转变。结果表明,温度1 350 ℃,沉降时间40 min,熔渣中CaO控制量为22%(质量分数,下同),还原剂炭粉添加量为2.29%时,渣中Cu2O的还原率达到95.36%,而还原剂炭粉量控制为8%时,渣中铁相沉降率和金属化率分别达到83.13%和85.30%。此时,由于贫化条件的适当控制,避免了铜铁金属混合物的还原析出,实现了渣中铜铁相的深度贫化,促进了铜熔渣贫化效果。此外,铜渣还原贫化过程中,由于助熔剂CaO和还原剂炭粉的添加,熔渣中铁氧化物被控制进行逐步还原,促使渣型由结构复杂的SiO2-Fe3O4-FeO高粘度渣系逐步转变为结构简单、低粘度、低熔点的CaO-Al2O3-SiO2三元渣系,体系渣型得到了有效优化,为后续铜渣的资源化利用提供了性能稳定的渣型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙雪玮
王杨
胡建杭
关键词:  铜渣  分步还原  深度贫化  渣型    
Abstract: The thermodynamics and experimental process of reduction of molten copper slag at high temperature were studied according to the phase composition of copper slag and the process characteristics of molten pool melting. The traditional one-step reduction metal recovery method of copper slag often produces a large number of metal alloys in the products, which reduces the metal recovery rate. In order to avoid improper control of reduction degree to generate metal alloy, this experiment adopted steps reduction method to recover valuable metal copper and iron in copper slag respectively, and analyzed the influence of melting pool temperature, the addition amount of flux CaO and reducing agent carbon powder on the dilution effect of slag, and mastered the transformation of slag type during reduction and dilution process. The results showed that the reduction rate of Cu2O in slag reached 95.36% for the temperature 1 350 ℃, the settling time 40 min, the CaO control amount in slag 22% and the reducing agent charcoal powder 2.29%. When the amount of reducing agent charcoal powder was controlled at 8%, the iron phase deposition rate and metallization rate reached 83.13% and 85.30% respectively. At this time, due to proper control of the dilution conditions, reduction and precipitation of the mixture of copper and iron metals are avoided. The deep dilution of copper and iron phase in slag is realized, and the effect of copper slag dilution is promoted. In addition, in the process of the reduction and dilution, because of the flux CaO and reducing agent carbon powder added, iron oxide in the copper slag were controlled to be gradually reduced, and the slag type was transformed from SiO2-Fe3O4-FeO high viscosity slag system with complex structure to SiO2-Al2O3-CaO ternary slag system with the low viscosity and low melting point. The slag type of the system has been effectively optimized, and it provides a stable slag type for the subsequent resource utilization of copper slag.
Key words:  copper slag    step reduction    deep dilution    slag type
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  F416.32  
基金资助: 国家自然科学基金(51376085);国家自然科学基金青年基金(U1602272)
通讯作者:  hujh51@126.com   
作者简介:  孙雪玮,于2019年6月毕业于昆明理工大学,获得硕士学位。主要从事二次资源回收再利用领域的研究。
胡建杭,教授, 现就职于昆明理工大学冶金与能源工程学院。2007年12月获昆明理工大学冶金能源工程专业博士学位,澳大利亚悉尼大学访问学者。2011年入选云南省中青年学术和技术带头人后备人才。获中国有色金属工业科学技术奖一等奖、省科技一等奖等省部级奖7项。主要从事高价值能源转化和新能源开发领域的技术基础理论和应用关键技术的科学研究。发表论文50余篇,被EI、SCI收录20篇,出版学术专著4部,获国家专利授权40余项。
引用本文:    
孙雪玮, 王杨, 胡建杭. 利用熔融分步还原法优化铜渣贫化效果及渣型结构[J]. 材料导报, 2019, 33(Z2): 505-511.
SUN Xuewei, WANG Yang, HU Jianhang. The Dilution Effect and Slag Shape Structure of Copper Slag Optimized by Melting Step Reduction Method. Materials Reports, 2019, 33(Z2): 505-511.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/505
1 Gorai B, Jana R K, Premchand. Resources Conservation & Recycling,2003,39(4),299.
2 Cardona N, Coursol P, Vargas J, et al. Canadian Metallurgical Quarterly,2013,50(4),330.
3 曹洪杨,张力,付念新,等.材料与冶金学报,2009,8(1),33.
4 李磊,王华,胡建杭,等.冶金能源,2009,28(1),44.
5 刘纲,朱荣.矿冶,2008,17(3),59.
6 Lei L I, Jian-Hang H U, Wang H. Chinese Journal of Process Enginee-ring,2011,11(1),65.
7 Cao Z C, Sun T C, Yang H F, et al. Journal of University of Science & Technology Beijing,2010,32(6),708.
8 张荣良.有色金属科学与工程,2001,15(1),31.
9 赵凯,程相利,齐渊洪,等.中国有色冶金,2012,41(1),56.
10 张林楠,张力,王明玉,等.有色金属工程,2005,57(3),44.
11 杨慧芬,景丽丽,党春阁.中国有色金属学报,2011,21(5),1165.
12 Tan P. China Nonferrous Metallurgy,2013,63(12),51.
13 Zhang J, Yuan-Hong Q I, Yan D L, et al. Journal of Iron & Steel Research International,2015,22(2),121.
14 叶雪均,秦华伟,杨俊彦,等.矿业研究与开发,2013(3),46.
15 Aljabri K S, Hisada M, Aloraimi S K, et al. Cement & Concrete Compo-sites,2009,31(7),483.
16 Gbor K, Valentina M, Jia C. Environmental Letters,2000,35(2),147.
17 Wei W, Zhang W, Ma G. Materials & Design,2010,31(6),2878.
18 Ozel E, Turan S, Coruh S, et al. Waste Management & Research,2006,24(2),125.
19 Shi C, Meyer C, Behnood A. Resources Conservation & Recycling,2008,52(10),1115.
20 Khanzadi M, Behnood A. Construction & Building Materials,2009,23(6),2183.
21 I· Alp, Deveci H, Süngün H. Journal of Hazardous Materials,2008,159(2),390.
22 朱茂兰,熊家春,胡志彪,等.有色冶金设计与研究,2016,37(168),19.
23 Herrtros O, Quiroz R, Manzano E, et al. Hydrometallurgy,1998,49(1-2),87.
24 薛文颖,申勇峰,赵宪明.有色金属,2008,60(1),77.
25 李金锡,张鉴.工程科学学报,2000,22(5),438.
[1] 何伟, 周予启, 王强. 铜渣粉作为混凝土掺合料的研究进展[J]. 材料导报, 2018, 32(23): 4125-4134.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed