Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 431-440    
  金属与金属基复合材料 |
汽车轻量化焊接技术发展现状与未来
陈宇豪, 薛松柏, 王博, 韩翼龙
南京航空航天大学材料科学与技术学院,南京 211106
Development Status and Future Direction of Welding Technology in the AutomotiveLightweight
CHEN Yuhao, XUE Songbai, WANG Bo, HAN Yilong
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
下载:  全 文 ( PDF ) ( 4178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人们对生活与生存环境质量的要求越来越高,“绿色环保、节能减排”已经成为我国社会的发展方向。汽车作为一种便民工具的同时也给能源和环境带来了负担。因此,各大汽车厂商都在为提高燃油效率、减少尾气排放设计解决方案。实现这些目标的一个有效方法就是降低汽车质量,汽车轻量化也由此成为汽车行业研究的热点。目前实现汽车轻量化的方法主要有优化结构设计、使用轻量化材料以及采用先进制造技术。
在汽车轻量化技术途径中,使用轻量化材料替代部分钢材是一个主要的研究方向,如采用铝合金、镁合金等有色金属以及高强度钢、复合材料等。但是铝、镁合金与钢材在热物理性质和化学性质上存在着较大的差异,传统焊接技术很难得到可靠的铝-钢、镁-钢焊接接头。近年来,国内外学者对铝-钢、镁-钢的焊接进行了大量的研究并取得了许多重要成果,为汽车轻量化材料的应用奠定了理论基础。
先进焊接技术的应用离不开相关材料焊接性能的提高和焊接工艺的改进,为了提高铝、镁合金与钢的焊接性能,许多研究者选择在钢的表面镀上一层金属,如Zn、Cu、Ni等。镀层金属在一定程度上改善了材料之间的润湿铺展,并使得界面处的连接方式得到改变,从而提高焊接接头的连接强度和焊接接头的可靠性。
各种先进焊接技术的应用也突破了传统焊接技术的局限性。冷金属过渡技术是数字化控制与焊接过程结合的产物,实现了对热输入的精准控制,在选择适当工艺的情况下得到了理想的焊接效果。电弧熔-钎焊和激光焊接技术效率较高,在异种金属的连接中应用十分广泛。搅拌摩擦焊是一种新型的固相连接技术,其焊缝中存在冶金结合和机械结合两种结合方式,且所得的焊接接头美观、牢固,受到了人们的关注。火焰钎焊自动化程度高,焊接方式灵活。
本文综述了几种在汽车轻量化领域潜在应用范围广阔的先进焊接技术,总结、归纳、分析了其研究现状和优缺点,对焊接工艺的选择、不同焊接技术的特点进行了评述,分析了轻量化材料的焊接性和适用性,并展望了所述焊接技术的未来发展趋势,为汽车轻量化焊接技术的发展提供借鉴与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇豪
薛松柏
王博
韩翼龙
关键词:  汽车轻量化  轻量化材料  铝-钢接头  焊接技术    
Abstract: With people’s increasingly high requirements on the quality of living environment, green environmental protection, energy conservation and emission reduction have become the development direction of our society. In order to reduce the burden on the environment and energy caused by automobiles, the lightweight of automobiles has become a critical topic in the automotive industry. At present, the methods for achieving lightweight vehicles are optimized structural design, the use of lightweight materials and the use of advanced manufacturing technologies.
In the approach of automotive lightweight, it is a major research direction to use lightweight materials such as aluminum alloys, magnesium alloys, high strength steels and composite materials, instead of part of steels. However, due to the poor weldability between different materials, it is difficult to obtain reliable welded joints by using traditional welding techniques. In recent years, researchers have made many important achievements in the welding of aluminum-steel and magnesium-steel, which have laid a theoretical foundation for the use of lightweight materials.
The application of advanced welding technology is closely related to material weldability and welding process. In order to improve the welding performance of aluminum and magnesium alloys and steel, many researchers choose to plate Zn, Cu, Ni, etc. on the surface of steel. The coated metal improves the wetting spread between the materials and changes the connection at the interface, thereby improving the joint strength and reliability of the welded joint.
The application of various advanced welding techniques has also broken through the limitations of traditional welding techniques. The cold metal transition technology is a combination of digital control and welding process, which achieves precise control of the heat input and obtains the ideal welding effect when the appropriate process is selected. Arc melting-brazing and laser welding techniques are highly efficient and widely used in the connection of dissimilar metals. Friction stir welding is a new type of solid phase joining technology. There are two combinations of metallurgical bonding and mechanical bonding in the weld, and the obtained welded joints are beautiful and firm, and have attracted people’s attention. Flame brazing is highly automated and flexible.
This paper reviews several advanced welding techniques that have a wide range of potential applications in the field of automotive lightweight. It not only summarizes the selection of welding process and the characteristics of different welding techniques, but also analyzes the weldability and applicability of lightweight materials. Finally, the future development trend of the welding technology is prospected, which provides reference for the development of automotive lightweight welding technology.
Key words:  automotive lightweight    lightweight materials    aluminum-steel joint    welding technology
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TG47  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
通讯作者:  xuesb@nuaa.edu.cn   
作者简介:  陈宇豪,2018年毕业于河南科技大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进连接技术。
薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生导师。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。
引用本文:    
陈宇豪, 薛松柏, 王博, 韩翼龙. 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(Z2): 431-440.
CHEN Yuhao, XUE Songbai, WANG Bo, HAN Yilong. Development Status and Future Direction of Welding Technology in the AutomotiveLightweight. Materials Reports, 2019, 33(Z2): 431-440.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/431
1 Ma F, Chen L H, Luo Y P. Advanced Materials Research,2012,538-541,2864.
2 Siskos P, Capros P, De Vita A. Energy Policy,2015,84,22.
3 Dhingra R, Das S. Journal of Cleaner Production,2014,85,347.
4 Witik R A, Payet J, Michaud V, et al. Composites Part A: Applied Science and Manufacturing,2011,42(11),1694.
5 Long J, Lan F, Chen J. Chinese Journal of Mechanical Engineering,2008,44(6),27.
6 Kocańda A, Sadłowska H. Archives of Civil and Mechanical Engineering,2008,8(3),55.
7 李报,陈思杰,赵丕峰.热加工工艺,2018(3),13.
8 范子杰,桂良进,苏瑞意.汽车安全与节能学报,2014(1),1.
9 Lesch C, Kwiaton N, Klose F B. Steel Research International,2017,88(10),170.
10 Bouaziz O, Zurob H, Huang M. Steel Research International,2013,84(10),937.
11 Guo R C, Wu N, Zhang G R. Advanced Materials Research,2011,341-342,226.
12 Men Y, Ma F, Peng H, et al. Engineering Sciences,2012,10(6),23.
13 Wen C, Wang Z, Deng X, et al. Steel Research International,2018,89(6),1.
14 王小乐,朱政强,陈燕飞,等.兵器材料科学与工程,2017(3),36.
15 Michailidis N, Stergioudi F, Maliaris G, et al. Surface and Coatings Technology,2014,259,456.
16 Sabelkin V, Mall S, Misak H. Fatigue & Fracture of Engineering Mate-rials & Structures,2018,41(3),653.
17 Mulligan C P, Vigilante G N, Cannon J J. Journal of Materials Enginee-ring and Performance,2017,26(11),5228.
18 Kulekci M K. The International Journal of Advanced Manufacturing Technology,2008,39(9-10),851.
19 任兰柱,董瑞君,徐洪,等.热加工工艺,2016(10),30.
20 Joost W J, Krajewski P E. Scripta Materialia,2017,128,107.
21 Asahina T. Welding International,2005,19(1),23.
22 郭伟.Mg/Fe夹Al层激光焊接工艺及界面反应机制研究.硕士学位论文,哈尔滨工业大学,2013.
23 黄晖,马翠英.机械研究与应用,2005(6),7.
24 Bambach M R. Thin-Walled Structures,2014,74,1.
25 Kim J W, Lee J S. Carbon,2015,94,524.
26 Golkarnarenji G, Naebe M, Badii K, et al. Materials,2018,11(3),385.
27 Kadla J F, Kubo S, Venditti R A, et al. Carbon,2002,40(15),2913.
28 Baker D A, Rials T G. Journal of Applied Polymer Science,2013,130(2),713.
29 Suzuki M. Materials Science Forum,2006,519-521,11.
30 Kochan, Anna. Assembly Automation,2000,20(2),132.
31 刘茜.天津汽车,1997(3),29.
32 Mori K, Abe Y, Kato T. Journal of Materials Processing Technology,2014,214(10),2002.
33 李亚江,刘坤.现代焊接,2012(3),1.
34 Qiu R, Iwamoto C, Satonaka S. Materials Characterization,2009,60(2),156.
35 Wang T, Zhang Y, Li X, et al. Vacuum,2017,141,281.
36 Qiu R, Li J, He Y, et al. Chinese Journal of Nonferrous Metals,2017,27(6),1176.
37 雷振,王旭友,王伟波,等.焊接学报,2007(11),65.
38 Jie P, Hu S, Shen J, et al. Journal of Materials Processing Technology,2016,238,212.
39 Lin J, Ma N S, Lei Y P, et al. Advanced Materials Research,2012,629,131.
40 李亚江,吴娜.焊接,2010(3),5.
41 ünel E, Taban E. Welding in the World,2017,61(1),1.
42 Miao Y G, Chen G Y, Zhang P, et al.金属学报(英文版),2017,30(8),721.
43 葛佳棋,王克鸿,周琦,等.焊接学报,2016(4),24.
44 曹睿,余刚,陈剑虹.焊接,2012(1),31.
45 Silvayeh Z, Vallant R, Sommitsch C, et al. Metallurgical and Materials Transactions A,2017.
46 宋建岭,林三宝,杨春利,等.焊接,2008(6),6.
47 Nguyen V, Nguyen Q, Huang S. Materials,2018,11(7),1136.
48 Tashiro S, Tanaka M. IOP Conference Series: Materials Science and Engineering,2014,61,12018.
49 Ribolla A, Damoulis G L, Batalha G F. Journal of Materials Processing Technology,2005,164-165,1120.
50 杨旭东,石岩,刘佳.机械工程学报,2014,50(14),143.
51 Bachmann M, Avilov V, Gumenyuk A, et al. Journal of Materials Processing Technology,2014,214(3),578.
52 Chen R, Wang C, Jiang P, et al. Materials & Design,2016,109,14.
53 马骁.SYG960E超高强钢/6061铝合金异种金属激光-MIG复合焊的研究.硕士学位论文,吉林大学,2017.
54 Watanabe T, Takayama H, Yanagisawa A. Journal of Materials Processing Technology,2006,178(1-3),342.
55 Syafiq W M, Afendi M, Daud R, et al. In:2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering. Kuala Lumpur, Malaysia,2017,pp.37.
56 徐海升,沈以赴,冯晓梅,等.南京航空航天大学学报,2015(3),436.
57 陈建斌,彭迟,程东海,等.金属加工(热加工),2015(10),63.
58 杨金龙,薛松柏,薛鹏,等.焊接学报,2015(1),63.
59 Yang J, Xue S, Xue P, et al. Materials Science and Engineering: A,2016,651,425.
60 Xue S, Zhang L, Han Z, et al. Transactions of Nonferrous Metals Society of China,2008,18(1),121.
61 Dai W, Xue S, Lou J, et al. Materials & Design,2012,42,395.
62 Yang J, Xue S, Xue P, et al. Materials & Design,2014,64,110.
[1] 薛松柏, 王博, 张亮, 龙伟民. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(17): 2813-2830.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed