Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 242-246    
  无机非金属及其复合材料 |
高粘度抗滑封装薄层沥青路面长效协同作用机理分析
王兆仑1,2, 刘朝晖1, 高建华2
1 长沙理工大学交通运输工程学院,长沙 410076;
2 河南交通职业技术学院公路学院,郑州 450006
The Analyse of the Long-Term Action Mechanism of High Viscosity Slip-ResistantEncapsulated Thin Layer and Asphalt Pavement
WANG Zhaolun1,2, LIU Zhaohui1, GAO Jianhua2
1 School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410076;
2 Highway Institute, Henan College of Transportation, Zhengzhou 450006
下载:  全 文 ( PDF ) ( 1951KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高沥青路面行车抗滑耐久性能,研究开发了一种新型的高粘度抗滑封装薄层材料。通过理论分析及室内肯塔堡飞散试验、抗折抗压强度试验、粘附力试验、干缩试验、静态模量试验及小型加载试验开展研究。结果表明:开发的高粘度抗滑封装薄层的弯拉强度标准值大于5.0 MPa,满足重载交通要求;与沥青路面具有很好的粘结力,斜剪试验28 d剪应力可达到0.89 MPa,是沥青路面抗剪要求的1.8倍;-10 ℃、15 ℃和60 ℃三个试验温度下28 d静态模量测定值均在8 000 MPa左右,能够抵抗车辆车载及温度应力作用;对于室内小型加速加载试验测试,经过18万次荷载作用,摆值仍能够达到51BPN,远高于规范要求的42BPN。开发的高粘度抗滑封装薄层耐磨、抗剪切能力强、静态模量大,通过与沥青面层协同作用可以提高路面抗滑性能,综合提高沥青路面长效抗滑机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兆仑
刘朝晖
高建华
关键词:  沥青路面  抗滑薄层  性能试验  加速加载  摆值    
Abstract: In order to improve the long-term performance of asphalt pavement against sliding, a new kind of high viscosity anti-sliding encapsulating thin layer material was developed. Through theoretical analysis and indoor Kentucky dispersion test, flexural and compressive strength test, adhesion test, static modulus test and small load test. The results show that the developed high viscosity anti-slip packaging thin layer has a flexural and tensile strength standard value greater than 5.0 MPa, which meets the requirements of heavy traffic.It has good adhesion with asphalt pavement, and the shear stress of 28 d oblique shear test can reach 0.89 MPa, which is 1.8 times of the shearing strength of asphalt pavement. -10 ℃, 15 ℃ and 60 ℃ three test temperature static modulus measurements of 28 d are about 8 000 MPa, resistant to vehicle on-board and temperature stress; after 180 000 times of loading, the pendulum value still reached 51BPN, far higher than the 42BPN required by the code.Conclusion: the developed high viscosity anti-skid encapsulation thin layer has strong abrasion resistance, shear resistance and static modulus. Through synergistic action with asphalt pavement, the anti-skid performance of pavement can be improved and the long-term anti-skid mechanism of asphalt pavement can be comprehensively improved.
Key words:  asphalt pavement    anti-slip thin layer    performance test    accelerated loading    pendulum value
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  U416.217  
基金资助: 河南省交通厅重点科研项目(2015Y09);河南省教育厅重点科研项目(19B580001)
通讯作者:  417617962@qq.com   
作者简介:  王兆仑,河南交通职业技术学院讲师,2009年9月至2012年6月,在长沙理工大学公路学院道路与铁道工程专业获得硕士学位。在国内外发表论文10余篇,申请国家专利5项,其中授权3项,参与省级项目10余项。研究工作主要围绕道路工程新材料的性能及应用。
引用本文:    
王兆仑, 刘朝晖, 高建华. 高粘度抗滑封装薄层沥青路面长效协同作用机理分析[J]. 材料导报, 2019, 33(Z2): 242-246.
WANG Zhaolun, LIU Zhaohui, GAO Jianhua. The Analyse of the Long-Term Action Mechanism of High Viscosity Slip-ResistantEncapsulated Thin Layer and Asphalt Pavement. Materials Reports, 2019, 33(Z2): 242-246.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/242
1 关宏信,张起森,等.公路交通科技,2010,27(9),14.
2 冉茂平,肖旺新,等.公路交通科技,2016,33(2),29.
3 钱振东,薛永超,等.中南大学学报(自然科学学报),2016,47(10),3590.
4 杨军,王昊鹏,等.长安大学学报(自然科学学报),2016,36(3),25.
5 祝斯月,秦先涛,等.材料科学与工程学报,2018,36(4),605.
6 刘清泉.中国公路学报,2004,17(3),19.
7 Li S,Noureldin S,Jian Y,et al. Indiana Department of Transportation,2012,27(2),317.
8 Guo Zhongyin, Yang Qun, Liu Benmin. Journal of Materials in Civil Engineering,2009,21(4),186.
9 Jackson N, Choubane B, Holzschuher C, et al. Reliability and Relevancy of Procedures and Technologies,2007,STP1486,59.
10 朱晟泽.东南大学学报(自然科学版),2018,48(4),719.
[1] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[2] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[3] 王选仓, 孙耀宁, 王文强, 赵伦, 周爱国. 粘层材料剪切疲劳特性及层间设计方法研究[J]. 材料导报, 2018, 32(16): 2750-2756.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed