Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 121-124    
  无机非金属及其复合材料 |
碳纤维蜂窝夹层结构防雷击铜网胶膜共固化设计及雷击与承载能力试验
李林杰, 马子广
中国直升机设计研究所,景德镇 333001
Co-curing Design of Lightning-resistant Copper Mesh Rubber Film and theLightning Strike/Failure Load Test of Carbon Fiber Honeycomb SandwichStructure
LI Linjie, MA Ziguang
China Helicopter Research and Development Institute, Jingdezhen 333001
下载:  全 文 ( PDF ) ( 2017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为有效防止直升机碳纤维蜂窝夹层复合材料蒙皮在雷击环境遭受雷击损伤,采用在蜂窝夹层结构表面铺设铜网胶膜一次固化成形的方法预防。针对直升机不同雷电附着区的七种典型蜂窝夹层结构采用A+B+C+D和D+B+C两种雷电流试验波形进行雷电直接效应试验,并采用面内剪切试验对试验件雷击前/后承载能力和铜网胶膜对承载能力的影响进行试验对比分析。试验证明,在蜂窝夹层结构表面铺设铜网胶膜一次固化成形的方法,能够有效预防雷击损伤,试验件未出现基体大面积烧蚀、分层和片状剥落等现象;承载能力试验中蜂窝夹层结构表现沿载荷加载方向起皱破坏的模式;试验件在雷击前/后承载能力衰减不明显,最大衰减量为4.5%;铜网胶膜有助于提高试验件承载能力,C型试验件相比H型试验件承载能力提高了26.9%;试验件承载能力分散性相对较小,最大分散度为10.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李林杰
马子广
关键词:  蜂窝夹层结构  雷击  铜网胶膜  共固化设计  承载能力    
Abstract: In order to effectively prevent the helicopter carbon fiber honeycomb sandwich skin from lightning strike damage, copper mesh rubber film was laid on the surface of honeycomb sandwich structure. A+B+C+D and D+B+C waveforms were used to lightning strike test, include 7 kinds of typical honeycomb sandwich structures for different lightning attachment zones of helicopter. The shear test was used to compare the failure load of the pieces before and after lightning strike test or the influence of copper mesh rubber film. It is proved that laying copper mesh rubber film on the surface of honeycomb sandwich structure can effectively prevent lightning strike, large-area ablative of matrix, delamination and exfoliation are not found. In the failure load test, the honeycomb sandwich structures are wrinkling damage in the direction of the loading. There are no obvious differences on the attenuation of the failure load, between pieces before and after lightning strike test,the maximum attenuation is 4.5 percent. Copper mesh rubber film is helpful to improve the failure load of pieces,type C increased by 26.9 percent compared with type H. The dispersion of failure load are relatively small,the maximum dispersion is 10.4 percent.
Key words:  honeycomb sandwich structure    lightning strike    copper mesh rubber film    co-curing design    failure load
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB332  
通讯作者:  lilinjie19880913@163.com   
作者简介:  李林杰,硕士,工程师,研究方向为直升机强度设计。自参加工作以来,参与国内多种型号直升机的强度设计工作,解决了多项型号和预研难题。
引用本文:    
李林杰, 马子广. 碳纤维蜂窝夹层结构防雷击铜网胶膜共固化设计及雷击与承载能力试验[J]. 材料导报, 2019, 33(Z2): 121-124.
LI Linjie, MA Ziguang. Co-curing Design of Lightning-resistant Copper Mesh Rubber Film and theLightning Strike/Failure Load Test of Carbon Fiber Honeycomb SandwichStructure. Materials Reports, 2019, 33(Z2): 121-124.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/121
1 杜善义.复合材料学报,2007(1),1.
2 屈霞,孙文刚.科技传播,2013,11,97.
3 Klemperer C J, Maharaj D. Composite Structures,2009,91(4),467.
4 Welch J M. In: 3rd FAA/EASA/Boeing/Airbus Joint Workshop on Safety and Certification, Amsterdam, NL,2007.
5 Yamanake J. In: 4rd FAA/EASA/Boeing/Airbus Joint Workshop on Safety and Certification. Tokyo, Japan,2009.
6 Uman M A,Rakov V A. Progress in Aerospace Sciences,2003,39(1),61.
7 Mazur V,Moreau J P. Journal of Aircraft,1992,29(4),575.
8 王昂.飞机设计手册-直升机设计,航空工业出版社,2005.
9 王昂.飞机设计手册-结构设计,航空工业出版社,2000.
10 Wang F S, Ding N, Liu Z Q, et al. Composite Structures,2014,117,222.
11 Hirano Y, Katsumata S, Iwahori Y, et al. In: ICCM17, Edinburgh,2009.
12 刘晓明,俞晓桑,王玖,等.材料科学与工程学报,2016,34(3),375.
13 刘志强,岳珠峰,王富生,等.复合材料学报,2015(1),284.
14 肖尧,尹俊杰,李曙林,等.复合材料学报,2018(6),1436.
15 Feraboli P, Miller M. Composites: Part A,2009,40(6-7),954.
16 Feraboli P, Kawakami H. Journal of Aircraft,2010,47(3),999.
17 Hirano Y, Katsumata S, Iwahori Y, et al. Composites: Part A,2010,41(10),1461.
18 Kawakami H, Feraboli P. Composites: Part A,2011,42(9),1247.
19 Chemartin L, Lalande P, Peyrou B, et al. Journal of Aerospace,2012,5,AL05.
20 Ogasawara T, Hirano Y, Yoshimura A. Composites: Part A,2010,41(8),973.
21 中华人民解放军总装备部.军用飞机雷电防护鉴定试验方法:GJB 3567—1999,总装备部军标出版发行部,北京,1999.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 闫民杰, 刘梁森, 陈莉, 刘丽研, 荆妙蕾, 徐志伟, 姜亚明, 傅宏俊. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180.
[3] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[4] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[5] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[6] 王晓燕, 王继梅, 侯国艳. 富锌载银可溶玻璃抗菌材料的性能[J]. 材料导报, 2019, 33(Z2): 92-96.
[7] 文立伟, 王若舟, 谢飞. 通过调节工艺参数控制热熔法制备的自动铺丝预浸纱的展开质量[J]. 材料导报, 2019, 33(Z2): 599-603.
[8] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[9] 陈景民,李久盛,陈晋阳,曾祥琼. 模拟人体皮肤湿度响应特征和力学性质的皮肤模型[J]. 材料导报, 2019, 33(22): 3829-3832.
[10] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[11] 党力, 李宛琴, 吕智慧, 胡杰林, 次旺拉姆, 刘威. 溶液共混法制备碱式硫酸镁晶须/聚丙烯复合材料及其力学性能[J]. 材料导报, 2019, 33(18): 3135-3139.
[12] 刘星, 霍俊丽, 李婷婷, 林佳弘, 楼静文. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
[13] 樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[14] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[15] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed