Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1221-1226    https://doi.org/10.11896/cldb.18010125
  金属与金属基复合材料 |
金属玻璃自由体积理论的研究概述
时博, 王金辉, 魏福安
青海大学青海省高性能轻金属合金及深加工工程技术研究中心,青海省新型轻合金重点实验室,西宁 810016
A State-of-the-art Review on Study of Free Volume Theory in metallic Glasses
SHI Bo, WANG Jinhui, WEI Fuan
Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light metal Alloys and Forming, Qinghai University, Xining 810016
下载:  全 文 ( PDF ) ( 8228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属玻璃具有高强度、高硬度、高弹性应变以及良好的耐腐蚀性,然而,尺寸小、脆性大的缺点严重限制了其广泛应用。自由体积是影响金属玻璃的玻璃转变、塑性变形、结构和性能的关键因素。因此,理清金属玻璃中自由体积理论的发展脉络十分重要。本文首先介绍了自由体积的概念,其次讨论了自由体积与玻璃转变、塑性变形、性能之间的关系,最后总结了自由体积含量的定量化方法。
自由体积参与了金属玻璃的玻璃转变和塑性变形等基本过程。由于自由体积处的原子配位数低,与周围区域的机械接合弱,所以在温度或应力的作用下,自由体积处容易发生结构扰动。研究表明,玻璃转变是一个依赖自由体积的动力学过程。当约化自由体积含量达到某一临界值时,开始发生玻璃转变。此外,自由体积理论也被用于解释金属玻璃的塑性变形。在自由体积的协助下,金属玻璃中的原子发生跃迁,进而实现塑性变形。而当自由体积含量达到某一临界值时,宏观变形局域化发生,即产生剪切带。分子动力学模拟、理论计算、透射电镜观察、声发射监测、剪切带热焓测试、密度测量等大量研究结果表明,剪切带上拥有大量的自由体积。
自由体积可以通过微合金化、塑性变形、离子束照射、提高冷却速率和降低吸铸电弧功率等多种方式促进产生。一般自由体积含量越高,就会有更多产生剪切带的区域,进而导致多重剪切带产生;同时金属玻璃粘度降低,原子移动能力增加,因此金属玻璃塑性随之增加。由于自由体积处的原子排列疏松,弹性模量较低,所以抵抗变形的能力较弱,因此金属玻璃的强度和硬度将随自由体积含量增加而降低。此外,自由体积还会影响金属玻璃的原子扩散速率和热稳定性等。
定量自由体积含量的方法主要有:(1)热分析法。通过计算结构驰豫过程的放热焓来确定自由体积含量。(2)正电子湮没谱。通过检测正电子寿命来确定自由体积含量。(3)密度测量。由于自由体积的引入会导致金属玻璃的密度变化,所以可通过测量密度来确定自由体积含量。(4)X射线衍射法。通过测定X射线衍射谱的最大衍射波矢Qmax的变化,确定自由体积的含量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
时博
王金辉
魏福安
关键词:  金属玻璃  自由体积  玻璃转变  塑性变形    
Abstract: metallic glasses feature high strength, high hardness, high elastic strain and satisfactory corrosion resistance. However, suffering from small dimension and high brittleness, metallic glasses can hardly realize widespread application. Free volume plays a crucial role in affecting the glass transition, plastic deformation, structure and properties of metallic glasses. Accordingly, it is of great significance to straighten out the deve-lopment of free volume theory. In this work, we firstly introduce the concept of free volume, then discuss the relationship of free volume with glass transition, plastic deformation and properties, finally summarize the quantitative methods for free volume evaluation.
Free volume is involved in basic processes of glass transition and plastic deformation of metallic glass. Due to low coordination number and weak mechanical bonding with the surrounding matrix, structural disturbance is prone to occur at free volume sites of metallic glasses under the actions of temperatures and stresses. Glass transition is demonstrated to be a dynamic process which is largely depended on free volume. Glass transition occurs when the reduced free volume content reaches a certain critical value. Besides, the plastic deformation mechanism of metallic glass can be also explained by free volume theory. The atomic transition and further plastic deformation can be realized with the assistance of free volume. moreover, when the free volume content reaches a certain critical value, the localization of macroscopic deformation appears, namely, shear bands generate. It has been proved by molecular dynamics simulation, theoretical calculation, transmission electron microscopy, acoustic emission monitoring, enthalpy measurement and density measurement that there exist a large amount of free volume in shear bands.
Generally speaking, free volume can be produced by microalloying, plastic deformation, ion beam irradiation, increasing the cooling rate, and decreasing the arc power. It is commonly believed that higher free volume content results in more sites for nucleation of shear bands, and further leads to the formation of multiple shear bands. meanwhile, with the increasing free volume content, the viscosity decreases, yet the atomic mobility and plasticity increase. Besides, the loose arrangement of atoms and low elastic modulus at free volume sites cause the weak deformation resistance of metallic glass. Consequently, the strength and hardness of metallic glass decrease with the increase of free volume content. moreover, free volume also exert notable effects on the atomic diffusion rate and thermal stability of metallic glasses.
The major approaches for determine the free volume content are as follows. (1) Thermal analysis: the free volume content is determined by calculating the exothermic enthalpy during the structural relaxation process. (2) Positron annihilation spectrum: free volume content is determined by detecting positron lifetime. (3) Density measurement: the introduction of free volume will cause the density variation, hence the free volume content can be determined by density measurement. (4) X-ray diffraction: free volume content is determined by measuring the variation of the maximum diffraction wave vector Qmax in the X-ray diffraction spectrum.
Key words:  metallic glasses    free volume    glass transition    plastic deformation
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG139.8  
基金资助: 青海省自然科学基金(2018-ZJ-951Q);青海省创新平台项目(2017-ZJ-Y17)
通讯作者:  jinhui.wang@qhu.edu.cn   
作者简介:  时博,2016年6月于兰州大学获得博士学位。现为青海大学机械工程学院讲师,主要研究领域为新型大块金属玻璃的开发、金属玻璃的韧化与塑性变形机制。王金辉,2010年6月于青海大学获得工学硕士学位。现为青海大学机械工程学院讲师,主要研究领域为镁合金及其复合材料。魏福安,2016年6月于兰州理工大学获得博士学位。现为青海大学机械工程学院讲师,主要研究领域为钢铁材料的组织性能。
引用本文:    
时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
SHI Bo, WANG Jinhui, WEI Fuan. A State-of-the-art Review on Study of Free Volume Theory in metallic Glasses. Materials Reports, 2019, 33(7): 1221-1226.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010125  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1221
1 Löffler J F. Intermetallics, 2003,11,529.
2 Wang W H, Dong C, Shek C H.materials Science and Engineering R: Reports, 2004,44,45.
3 Schuh C, Hufnagel T, Ramamurty U.Acta materialia, 2007,55,4067.
4 Cohen m H, Turnbull D.Journal of Chemical Physics, 1959,31,1164.
5 Beukel A V D, Sietsma J.Acta metallurgica et materialia, 1990,38,383.
6 Spaepen F. Acta metallurgica,1977,25,407.
7 Ke H B, Wen P, Zhao D Q, et al.Applied Physics Letters, 2010,96,251902.
8 Wang J G, Zhao D Q, Pan m X, et al.Scripta materialia, 2010,62,477.
9 Spaepen F. Defects in amorphous metals, North Holland Press, Amsterdam, 1981.
10 Chen m. Annual Review of materials Research, 2008,38,445.
11 Liu Y, Bei H, Liu C T, et al. Applied Physics Letters, 2007,90,071909.
12 Slipenyuk A, Eckert J. Scripta materialia, 2004,50,39.
13 Wang X D, Cao Q P, Jiang J Z, et al. Scripta materialia, 2011,64,81.
14 Cheng Y Q, ma E. Applied Physics Letters, 2008,93,051910.
15 Liu X J, Chen G L, Hui X, et al. Applied Physics Letters, 2008,93,011911.
16 Hu Q, Zeng X R, Fu m W. Journal of Applied Physics, 2011,109,053520.
17 Argon A S. Acta metallurgica, 1979,27,47.
18 Greer A L, Cheng Y Q, ma E. materials Science and Engineering R:Reports, 2013,74,71.
19 Steif P S, Spaepen F, Hutchinson J W. Acta metallurgica, 1982,30,447.
20 Yang B, Liu C T, Nieh T G. Applied Physics Letters, 2006,88,221911.
21 Huo L S, ma J, Ke H B, et al. Journal of Applied Physics, 2012,111,113522.
22 Zhao L Z, Xue R J, Zhu Z G, et al. Journal of Applied Physics, 2014,116,103516.
23 Liu J W, Cao Q P, Chen L Y. Acta materialia 2010,58,4827.
24 Pampillo C A. Scripta metallurgica, 1972,6,915.
25 Wright W J, Hufnagel T C, Nix W D. Journal of Applied Physics, 2003,93,1432.
26 Jiang W H, Pinkerton F E, Atzmon m. Acta materialia, 2005,53,3469.
27 Klaumunzer D, Lazarev A, maass R, et al. Physical Review Letters, 2011,107,185502.
28 Li Q K, Li m. Applied Physics Letters, 2006,88,241903.
29 Pan J, Chen Q, Liu L, et al. Acta materialia, 2011,59,5146.
30 Bailey N P, Schiøtz J, Jacobsen K W. Physical Review B, 2006,73,064108.
31 Rösner H, Peterlechner m, Kubel C, et al. Ultramicroscopy, 2014,142,1.
32 Schmidt V, Rosner H, Peterlechner m, et al. Physical Review Letters, 2015,115,035501.
33 Hirata A, Kang L J, Fujita T, et al. Science, 2013,341,376.
34 Hirata A, Guan P, Fujita T, et al. Nature materials, 2011,10,28.
35 Zhang Y, Greer A L. Applied Physics Letters, 2006,89,071907.
36 Bei H, Xie S, George E P. Physical Review Letters, 2006,96,105503.
37 Huang Y J, Shen J, Sun J F. Applied Physics Letters, 2007,90,081919.
38 Tan J, Zhang Y, Sun B A, et al. Applied Physics Letters, 2011,98,151906.
39 Chen L Y, Fu Z D, Zhang G Q, et al. Physical Review Letters, 2008,100,075501.
40 Bian X L, Wang G, Chen H C, et al. Acta materialia, 2016,106,66.
41 Xu Y, Shi B, ma Z, et al. materials Science and Engineering: A, 2015,623,145.
42 Yan m, Sun J F, Shen J. Journal of Alloys and Compounds, 2004,381,86.
43 Huang Y, Sun Y, Shen J. Intermetallics, 2010,18,2044.
44 Yang B, morrison m L, Liaw P K, et al. Applied Physics Letters, 2005,86,141904.
45 Chen Y, Jiang m, Dai L. Science China Physics, mechanics and Astronomy, 2011,54,1488.
46 Wang Y, Li m, Xu J. Scripta materialia, 2016,113,10.
47 Wang Y, Li m, Xu J. Scripta materialia, 2017,130,12.
48 Lei X, Wei Y, Hu Z, et al. Philosophical magazine Letters, 2013,93,221.
49 Gleiter H. Acta materialia, 2008,56,5875.
50 Bokeloh J, Divinski S V, Reglitz G, et al. Physical Review Letters, 2011,107,235503.
51 Chen m, Inoue A, Zhang W, et al. Physical Review Letters, 2006,96,245502.
52 miyauchi T, Kato H, Abe E. materials Research Letters, 2014,2,94.
53 Xu Y, Fang J, Gleiter H, et al. Scripta materialia, 2010,62,674.
54 Flores K m, Sherer E, Bharathula A, et al. Acta materialia, 2007,55,3403.
55 Nagel C, Rätzke K, Schmidtke E, et al. Physical Review B, 1999,60,9212.
56 Haruyama O, Inoue A. Applied Physics Letters, 2006,88,131906.
57 Yavari A R, moulec A L, Inoue A, et al. Acta materialia, 2005,53,1611.
58 Shao H, Xu Y, Shi B, et al. Journal of Alloys and Compounds, 2013,548,77.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[3] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[4] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[5] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[6] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[7] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[8] 张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
[9] 王锋. 冷喷涂中颗粒形状和温度对其沉积过程的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 138-142.
[10] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed