Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1156-1162    https://doi.org/10.11896/cldb.18010096
  无机非金属及其复合材料 |
石墨烯量子点的制备及在生物传感器中的应用研究进展
陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭
三峡大学材料与化工学院,湖北省无机非金属晶态与能源转换材料重点实验室,宜昌 443002
A Survey on the Synthesis and Application in Sensors of Graphene Quantum Dots
CHEN Weifeng, LYU Guo, TAO Huachao, CHEN Shaona, LI Dejiang, DAI Zhongxu
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion materials, College of materials and Chemical Engineering, China Three Gorges University,Yichang 443002
下载:  全 文 ( PDF ) ( 15898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是由一层碳原子以sp2杂化轨道按蜂巢晶格排列构成的二维碳纳米材料,由于其超大的平面共轭结构,石墨烯中的π电子具有显著的离域效应。石墨烯具有许多令人惊奇的电子或电学性质,比如室温量子霍尔效应、自选传输性质、极高的载流子迁移率和超低的电阻率以及优异的光学性质和力学性质。然而,与其他绝大多数二维材料不同,较大二维尺寸的石墨烯还具有零带隙的半金属材料特性,限制了石墨烯在光电器件和半导体等领域的应用。
因此,如何打开石墨烯的带隙,将其从半金属材料转变为半导体材料,引起了人们的广泛兴趣。目前,已知打开石墨烯带隙的方法主要有两种:一种是对石墨烯进行化学掺杂以破坏其π电子共轭体系;另外一种是基于量子效应,将石墨烯切割成纳米带、纳米筛或量子点。石墨烯量子点(GQDs)是二维平面尺寸小于100 nm的石墨烯片段,因其具有量子限域效应和边界效应而呈现出特殊的物理化学性质,是一种具有带隙的半导体材料。与传统半导体量子点相比,GQDs具有毒性低、水溶性好、化学活性低、生物相容性好以及荧光性质稳定等突出优点。此外,GQDs 具有单原子层平面共轭结构和较大的比表面积,同时表面的含氧基团可以为外来分子与之结合提供活性位点,在太阳能电池、光电子器件、生物医药等领域具有广泛的应用前景。
GQDs的制备方法主要分为自上而下和自下而上两种方法。自上而下法主要包括强酸氧化法,水热/溶剂热法,电化学氧化法等。该方法的优点是原料来源丰富、制备过程相对简单,制备所得的GQDs表面含有丰富的含氧基团,具有良好的水溶性,易于表面功能化。自下而上方法主要分为可控有机合成和碳化反应。前者可以制备出具有精确碳原子数、大小和形状均一的GQDs,但是制备过程复杂繁琐、反应耗时长且产率较低,而后者所制备的GQDs,其尺寸和结构难以控制,产物具有多分散性。本文全面介绍了石墨烯量子点的各种制备方法,对这些方法的特点进行了评论,同时对重要或新颖方法的反应机理进行了阐述,并且重点介绍了GQDs在生物传感器方面的应用,最后对GQDs的未来研究和发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈卫丰
吕果
陶华超
陈少娜
李德江
代忠旭
关键词:  石墨烯量子点  自上而下法  自下而上法  生物传感器    
Abstract: Graphene belongs to two dimension carbon nanomaterial composed of a layer of carbon atoms arranged in sp2 hybrid orbitals with honeycomb lattice. The π electrons in graphene exhibit notable delocalization effect doe to its large planar conjugate structure. Graphene shows many amazing electronic or electrical properties, such as room temperature quantum hall effect, free transport properties, high carrier mobility, low resistivity, excellent optical properties and mechanical properties. Unfortunately, different from most other two-dimensional materials, the graphene of large size bears zero band gap and semi-metallic property, which hinders its application in the fields of photoelectric device, semiconductor and so forth.
Accordingly, how to open the band gap of graphene and transform it from semi-metallic material to semiconductor material has aroused nume-rous interests. Currently, there are two known approaches to open the band gap of graphene. One is to to break the π electronic conjugate system of graphene by chemical doping. The other is to tailor graphene into nanorods, nanosieves, or quantum dots based on their quantum effects. Graphene quantum dots (GQDs) are segments of two-dimensional graphene with plane size less than 100 nm. Thanks to the quantum confined effect and boundary effect, GQDs are endowed with special physical and chemical properties, and they are also semiconductor materials with band gap. GQDs are superior to conventional semiconductor quantum dots, owing to their low toxicity, favorable water solubility, low chemical activity, satisfactory biocompatibility and stable fluorescence properties. Besides, GQDs possess monatomic planar conjugate structure and large specific surface area, and the oxygen groups on the GQDs surface can provide active site for the binding of foreign molecules. Consequently, GQDs show a broad prospect of application in solar cells, optoelectronic devices, biological medicine and other fields.
The synthesis approaches of GQDs can be divided into top-down and bottom-up methods. The top-down method mainly includes strong acid oxidation, hydrothermal/solvothermal reactions, electrochemical oxidation,and so forth, which feature good water solubility and is prone to be functionalized. The bottom-up method is mainly divided into controllable organic synthesis and carbonization reaction. As for the former, GQDs with uniform size and shape, and precise carbon atom number can be obtained, but it suffers from complicated synthtic process, long reaction time and low production rate. While the latter is the common reaction for the synthesis of GQDs, although the size and structure of the products can be hardly to control, and the obtained GQDs usually present polydispersity. This paper comprehensively introduces the diverse synthesis approaches of GQDs, and provide detailed comments on these approaches. At the same time, the reaction mechanism of important or novel methods are expounded. In addition, emphasis is put on the applications of GQDs in the field of biosensors. Finally, the research and development of the GQDs in the future is proposed.
Key words:  graphene quantum dots    top-down    bottom-up    biosensor
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TQ127.1  
基金资助: 国家自然科学基金(51402168);湖北省教育厅项目(B2015252)
通讯作者:  daizx@ctgu.edu.cn   
作者简介:  陈卫丰,2009年博士毕业于中山大学材料科学与工程学院。之后在北京大学开展博士后研究工作。目前,在三峡大学材料与化工学院任职。主要的研究兴趣为功能纳米材料的制备及应用,特别是石墨烯材料。代忠旭,1991年本科毕业于华中师范大学,获得学士学位,1997年和2001年在武汉大学分别获得硕士和博士学位。2002—2004年在武汉大学从事博士后研究工作。目前为三峡大学材料与化工学院教授,担任副院长,主要研究领域为纳米材料的电化学合成、燃料电池的制备等。
引用本文:    
陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
CHEN Weifeng, LYU Guo, TAO Huachao, CHEN Shaona, LI Dejiang, DAI Zhongxu. A Survey on the Synthesis and Application in Sensors of Graphene Quantum Dots. Materials Reports, 2019, 33(7): 1156-1162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010096  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1156
1 Novoselov K S, Geim A K, morozov S V,et al. Science, 2004, 306(5696), 666.
2 Novoselov K S, Jiang D, Schedin F,et al. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30), 10451.
3 Geim A K. Science, 2009, 324(5934), 1530.
4 Bolotin K I, Sikes K J, Jiang Z, et al. Solid State Communications, 2008, 146(9-10), 351.
5 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
6 Choi S H. Journal of Physics D: Applied Physics, 2017, 50(10), 1.
7 Xu X Z, Zhou J, Jestin J, et al. Carbon, 2017, 124, 133.
8 Kim K S, Zhao Y, Jang H, et al. Nature, 2009, 457(7230), 706.
9 Yan X, Cui X, Li B. Nanotechnology Letters, 2010, 10(5), 1869.
10 Jaya P N, Prasanta S, mitali S. Journal of Neurochemistry, 2017, 7(1), 85.
11 Yan X, Li B, Cui X, et al. Journal of Physical Chemical Letters, 2011, 2(10), 1119.
12 Kittiratanawasin L, Hannongbua S. Integrated Ferroelectrics, 2016, 175(1), 211.
13 Zhu C, Yang S W, Wang G, et al. Journal of materials Chemistry, 2015, 3(34), 8810.
14 Shen J, Zhu Y, Chen C. Chemical Communications, 2011, 47(9), 2580.
15 Cho H H, Yang H, Kang D J. ACS Applied materials & Interfaces, 2015, 7(16), 8615.
16 Yu D J, Zhang X m, Qi Y X. Sensors and Actuators B—Chemical, 2016, 235, 394.
17 Schroeder K L, Goreham R V, Nann T. Pharmaceutical Research, 2016, 33(10), 1.
18 Iannazzo D, Pistone A, Salamòm. International Journal of Pharmaceutics, 2017, 518 (1-2), 185.
19 Tang L, Ji R, Cao X, et al. ACS Nanotechnology, 2012, 6(6), 5102.
20 Zhuo S, Shao m, Lee S T. ACS Nanotechnology, 2012, 6(2), 1059.
21 Pedro C, Ignacio G, Luis Y. Carbon, 2016, 109, 658.
22 Zhu S, Zhang J, Liu X. RSC Advance, 2012, 2(7), 2717.
23 Wang H, Tian H, Wang S. Journal of materials Science Letters, 2012, 78, 170.
24 Zhang m, Bai L, Shang W. Journal of materials Chemistry, 2012, 22, 7461.
25 Xie J, Huang K, Yu X, et al. ACS Nanotechnology, 2017, DOI: 10.1021/acsnano.7b04070.
26 Tsai m L, Wei W R, Tang L, et al. ACS Nanotechnology, 2016, 10(1), 815.
27 Zhu S, Zhang J, Tang S. Advanced Functional materials, 2012, 22(22), 4732.
28 Zhu S, Zhang J, Qiao C. Chemical Communications, 2011, 47(24), 6858.
29 Dong Y, Chen C, Zheng X,et al. materials Chemistry and Physics, 2012, 22(18), 8764.
30 Gupta V, Chaudhary N, Srivastava R, et al. Journal of the American Chemical Society, 2011, 133(26), 9960.
31 Zhu S J, Song Y B, Wang J. Nanotechnology Today, 2017, 13, 10.
32 Pan D, Zhang J, Li Z, et al. Advanced materials, 2010, 22(6), 734.
33 Pan D, Guo L, Zhang J, et al. Journal of materials Chemistry, 2012, 22(8), 3314.
34 Shen J, Zhu Y, Chen C. Chemistry Communications, 2011, 47(9), 2580.
35 Niu Y S, Sun F Y.Chinese Journal of Analytical Chemistry, 2017, 45(7), 996.
36 Bian S Y, Chao S, Qian Y T. et al. Sensor and Actuators B—Chemical, 2017, 242, 231.
37 Xie J D, Lai G W, Huq m m. Diamond and Related materials, 2017, 79, 112.
38 Li Y, Hu Y, Zhao Y. Advanced materials, 2011, 23(6), 776.
39 Ananthanarayanan A, Wang X, Routh P, et al. Advanced Functional materials, 2014, 24(20), 3021.
40 Chen L, Guo C X, Zhang Q. ACS Applied materials & Interfaces, 2013, 5, 2047.
41 Shinde D B, Pillai V K. Chemistry—A European Journal, 2012, 18(39), 12522.
42 Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14), 1620.
43 Liu m L, Xu Y H, et al. Analyst, 2016, 141(9), 2657.
44 Zhao Q, Zhang Z, Huang B, et al. Chemistry Communications, 2008, 41(41), 5116.
45 Zheng L, Chi Y, Dong Y.Journal of the American Chemical Society, 2009,131(13), 4564.
46 Lu J, Yang J, Wang J, et al. ACS Nanotechnology, 2009, 3(8), 2367.
47 Hummers W S, Offeman R E.Journal of the American Chemical Society, 1958, 80(13), 1339.
48 Peng J, Gao W, Gupta B K. Nanotechnology Letters, 2012, 12(2), 844.
49 Lu Q J, Wu C Y, Liu D, et al. Green Chemistry, 2017, 19(4), 900.
50 Wen J W, Li m J, Xiao J D. materials Today Communications, 2016, 8(9), 127.
51 Yan X, Cui X, Li L. Journal of the American Chemical Society, 2010, 132(17), 5944.
52 Bayat E S. Jounal of Luminescence, 2017, 192, 180.
53 Tang L, Ji R, Cao X, et al. ACS Nanotechnology, 2012, 6(6), 5102.
54 Lu P H, Jiang L Q, Guan X F. Journal of Bengbu University, 2015, 8(3), 36.
55 Dong Y, Shao J, Chen C. Carbon, 2012, 50, 4738.
56 Liu R, Wu D, Feng X. Journal of the American Chemical Society, 2011, 133(39), 15221.
57 Ponomarenko L A, Schedin F, Katsnelson m I, et al. Science, 2008, 320(5874), 356.
58 Lu J, Ye P S, Gan C K. Nature Nanotechnology, 2011, 6, 247.
59 Wu X, Tian F, Wang W X, et al. Journal of materials Chemistry C, 2013, 1(31), 4676.
60 Wang J, Zhou J, Zhou W, et al. Journal of Nanoscience and Nanotech-nology, 2016, 16(4), 3457.
61 Chen W F, Hu W m, Li D J,et al. Journal of New materials for Electrochemical Systems, 2017, 20, 205.
62 Shen J, Zhu Y, Chen C, et al. Chemistry Communications, 2011, 47(9), 2580.
63 Li Y, Hu Y, Zhao Y. Advanced materials, 2011, 23(6), 776.
64 Zhang m, Bai L, Shang W, et al. Chemistry of materials, 2012, 22(15), 7461.
65 Qi Y X, Zhang m, Fu Q Q,et al. Chemical Communications, 2013, 49(90), 10599.
66 Liu J, Zhang X, Cong Z.Nanoscale, 2013, 5(5), 1810.
67 Huang H P, Xu L, Yue Y F, et al.Science and Engineering of Nonferrous metals, 2017, 8, 47.
68 Liu R, Yang R, Qu C J. Sensors and Actuators B—Chemical, 2017, 241, 644.
69 Qu Z B, Zhou X, Gu L, et al. Chemistry Communications, 2013, 49(84), 9830.
70 Qian Z S, Shan X Y, Chai L J, et al. Biosensors Bioelectronics, 2014, 60, 64.
71 Razmi H, mohammad R. Biosensors Bioelectronics, 2013, 41, 498.
72 Jiang Deli, Zhang Yuan, Chu Haoyu. RSC Advances, 2014, 4, 16163.
73 Roy P, Periasamy A P, Chuang C, et al. New Journal of Chemistry, 2014, 38(10), 4946.
74 Kong L, Yang Y Q, Li R Y. Electrochimica Acta, 2016, 198, 144.
75 Ganganboina A B, Chowdhury A D, Doong R. ACS Sustainable Chemistry & Engineering, 2017, 5(6), 4930.
76 Zhang S, Li Y, Song H, et al. Scientific Reports, 2016, 6, 19292.
77 Kim S, Hee D. Kim S J. Scientific Reports, 2016, 6, 27145.
78 mihalache I, Radoi A R, Romanitan C. ACS Applied materials & Interfaces, 2017, DOI:10.1021/acsami.7b07667.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[3] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[4] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed