Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2461-2466    https://doi.org/10.11896/cldb.18040139
  高分子与聚合基复合材料 |
聚羧酸减水剂与增强组分的复合效应及原理
都蓉蓉1,2, 张雄1,2, 顾明东2, 季涛2
1 同济大学先进土木工程材料教育部重点实验室,上海 201804;
2 同济大学材料科学与工程学院,上海 201804
The Composition Effect and Mechanism of Polycarboxylate Superplasticizers and Early Strength Agent
DU Rongrong1,2, ZHANG Xiong1,2, GU Mingdong2, JI Tao2
1 Key Laboratory of Advanced Civil Engineering Material, Ministry of Education, Tongji University, Shanghai 201804;
2 School of Materials Science & Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 3018KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 关于聚羧酸减水剂与增强组分进行复配的机理尤其是水化进程的研究较少。本工作通过聚羧酸减水剂复配有机类和无机类早强剂,测试净浆流动度和流变参数、砂浆强度、水泥水化热、水泥水化产物的XRD谱和TG-DTA曲线,以分析研究水泥基材料的流动及强度的发展规律。研究表明,无机类早强剂硫代硫酸钠(Na2(S2O3))与氯化钙(CaCl2)的加入会显著降低聚羧酸减水剂的减水率,破坏聚羧酸减水剂的空间位阻效应;甲酸钙(Ca(HCOO)2)、硫氰酸钠(NaSCN)及三乙醇胺(TEA)的加入对聚羧酸减水剂的减水率无显著影响。通过检测24 h水泥水化热可知, 随着早强剂的加入,水泥浆体在水化加速期的水化程度相应提高。通过XRD、TG-DTA分析看出,早强剂的加入可显著提高3 d水泥水化进程中C-S-H凝胶、氢氧化钙(Ca(OH)2)以及钙矾石(AFt)的生成速率,但对水泥浆体28 d水化进程无显著影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
都蓉蓉
张雄
顾明东
季涛
关键词:  聚羧酸减水剂  复配效应  早期强度  水化进程    
Abstract: The composition mechanism of polycarboxylate superplasticizers and early strength agent is not well studied, especially the hydration process. In this study, the organic and inorganic early strength agents were compounded, followed by the measurement of the cement paste fluidity, cement mortar strength and viscosity. The test of cement hydration heat, XRD, TG-DTA were used to demonstrate the hydration process. According to the research, the introduce of inorganic early strength agent such as sodium thiosulfate and calcium chloride could destroy the steric hindrance effect, leading to the significant decrease of the water-reducing rate of polycarboxylate superplasticizers. However, calcium formate, sodium thiocyanate and triethanolamine showed almost no effect on water-reducing rate. According to the test result of hydration heat of cement during 24 h, the hydration degree of cement paste can be improved during the hydration acceleration by adding early strength agent. As shown in the XRD and TG-DTA analysis, early strength agent could increase the formation of AFt, calcium hydroxide and C-S-H gel in 3 d hydration, but showed little effect on the 28 d hydration.
Key words:  polycarboxylate superplasticizers    composition effect    early strength    hydration process
                    发布日期:  2019-06-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51378391)
通讯作者:  zhangxiong@tongji.edu.cn   
作者简介:  都蓉蓉,2016年6月毕业于同济大学,获得学士学位。2016年9月—2019年6月就读于同济大学材料科学与工程学院,主要从事建筑功能材料及透水路面材料的研究。张雄,同济大学二级教授、博士研究生导师,同济大学建筑材料研究所所长,主要从事建筑功能材料及新型建筑材料方向的研究。
引用本文:    
都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
DU Rongrong, ZHANG Xiong, GU Mingdong, JI Tao. The Composition Effect and Mechanism of Polycarboxylate Superplasticizers and Early Strength Agent. Materials Reports, 2019, 33(14): 2461-2466.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040139  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2461
1 Shi L L, Wang D M, Liu Z H. Ready-mixed Concrete, 2012(7),35(in Chinese).
石龙龙, 王栋民, 刘治华.商品混凝土, 2012(7),35.
2 Zhang C Q, He S, Zha D F, et al. Journal of Civil Engineering and Management, 2014(4),17(in Chinese).
张长清, 贺帅, 査道锋,等.土木工程与管理学报, 2014(4),17.
3 Zhao M M, Xin Y L, Wang L. Concrete, 2011(4),91(in Chinese).
赵明明, 辛运来, 王亮.混凝土, 2011(4),91.
4 Li P, Yang Z, Zhang J, et al. Industrial Construction, 2014(s1),972(in Chinese).
李萍, 杨钊, 张建,等.工业建筑, 2014(s1),972.
5 Lei X P. Bulletin of the Chinese Ceramic Society, 2010(4),948(in Chinese).
雷西萍.硅酸盐通报,2010(4),948.
6 Xue J P. New Building Materials,2016(9),77(in Chinese).
薛军鹏.新型建筑材料,2016(9), 77.
7 Li P, Zhou Z Y, Cai Q Q, et al. New Building Materials, 2014(9), 38(in Chinese).
李萍,周转运,蔡其全,等.新型建筑材料, 2014(9),38.
8 Peev P, Hill R L. U.S. patent application, 10/308633,2004.
9 Cao Y. Study on preparation and properties of the early strength compound polycarboxylate superplasticizer. Master's Thesis, Wuyi University, China,2016(in Chinese).
曹禹.早强型聚羧酸系复合减水剂的制备及性能研究. 硕士学位论文, 五邑大学, 2016.
10 Du Q. Study on early strength performance of polycarboxylate superplasticizer with mechanism. Master's Thesis, Wuhan University of Technology, China, 2012(in Chinese).
杜钦.聚羧酸减水剂的早强性能及其机理研究.硕士学位论文,武汉理工大学, 2012.
11 Cheng P J, Wang N N, Wang K, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(10),2672(in Chinese).
程平阶, 王宁宁, 王凯, 等. 硅酸盐通报, 2014, 33(10),2672.
12 Jiang N, Wang Z, Wang L L, et al. Journal of the Chinese Ceramic Society, 2013(11),1521(in Chinese).
江楠, 王智, 王林龙, 等.硅酸盐学报, 2013(11),1521.
[1] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[2] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[3] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[4] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[5] 何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
[6] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[7] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[8] 白静静, 李海艳, 史才军, 管学茂, 向顺成. 硫铝酸盐水泥用抗泥型聚羧酸减水剂的制备及性能[J]. 《材料导报》期刊社, 2018, 32(14): 2384-2389.
[9] 李志坤, 彭家惠, 杨再富. 矿物掺合料对聚羧酸减水剂与水泥相容性的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 115-120.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed