Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4339-4345    https://doi.org/10.11896/j.issn.1005-023X.2018.24.024
  金属与金属基复合材料 |
淬火20CrNi2Mo低碳钢中大角度晶界对强度的影响
卢叶茂1,2, 梁益龙1,2, 龙绍檑1,2, 杨明1,2, 尹存宏2
1 贵州大学材料与冶金学院,贵阳 550025;
2 贵州省材料结构与强度重点实验室,贵阳 550025
Effect of the High Angle Boundaries on Strength for 20CrNi2Mo Steel
LU Yemao1,2, LIANG Yilong1,2, LONG Shaolei1,2, YANG Ming1,2, YIN Cunhong2
1 College of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang 550025;
2 Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guiyang 550025
下载:  全 文 ( PDF ) ( 2629KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用OM、SEM、EBSD和TEM对20CrNi2Mo钢的微观组织进行定量表征,同时讨论了位错强化(σd)、固溶强化(σss)、析出强化(σd)和晶界强化(σg) 对试验钢强度的贡献,且利用经典的Hall-Petch关系分析了强度的有效控制单元。结果表明:随淬火温度的升高,试验钢的原奥氏体晶粒(dr)和马氏体束(d0)、块(db)等均增大,马氏体板条略微细化。同时,试验钢的强度随淬火温度的升高而降低,塑性增加;量化的四种强化方式中σdσss 基本不变,σd忽略不计,试验钢的强度变化主要取决于σg。此外,试验钢的强度与多层次组织间的Hall-Petch关系揭示了块是强度的有效控制单元。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢叶茂
梁益龙
龙绍檑
杨明
尹存宏
关键词:  20CrNi2Mo钢  马氏体  多层次结构  大角度晶界  有效控制单元    
Abstract: The micro-structures for 20CrNi2Mo were characterized quantitatively by OM, SEM, EBSD and TEM, and the contribution of strength was discussed from four strengthening mechanisms, e.g. dislocations hardening (σd), solid solution hardening (σss), precipitation hardening (σp) and grain boundary strengthening (σg). Subsequently, the Hall-Petch equation was used to determine the effective control unit of strength. The results showed that prior austenite grain (dr), packet (dp) and block (db) increased with the increasing of quenching temperature while the martensite lath decreased. Meanwhile, as the increasing of quenching tempe-rature, the strength of tested steel increased and the plasticity decreased. The increasing of strength was determined by σg or the common role for dr, dp and db, namely the dislocation was hindered from the high angle boundaries. The contribution of σd and σss remained and σd was ignored. In addition, the martensite was the effective control unit of strength from the Hall-Petch relationship.
Key words:  20CrNi2Mo steel    martensite    multi-level microstructure    high angle boundaries    effective control unit
                    发布日期:  2019-01-23
ZTFLH:  TG142.1+2  
基金资助: 国家自然科学基金(51461006)
通讯作者:  梁益龙:通信作者,男,1955年生,教授,博士研究生导师,从事新型金属材料、材料强度与断裂以及热加工装备研究 E-mail:liangyilong@126.com   
作者简介:  卢叶茂:男,1992年生,硕士研究生,从事金属材料及其力学性能研究 E-mail:luleafm@163.com
引用本文:    
卢叶茂, 梁益龙, 龙绍檑, 杨明, 尹存宏. 淬火20CrNi2Mo低碳钢中大角度晶界对强度的影响[J]. 材料导报, 2018, 32(24): 4339-4345.
LU Yemao, LIANG Yilong, LONG Shaolei, YANG Ming, YIN Cunhong. Effect of the High Angle Boundaries on Strength for 20CrNi2Mo Steel. Materials Reports, 2018, 32(24): 4339-4345.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.024  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4339
1 Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels[J].Metallurgical and Materials Transactions A,1986,17(7):1203.
2 Xu Zhou, Men Xueyong, Yao Zhongkai. Metallographic research method of lath martensite structure[J].Physics Examination and Testing,1984(6):18(in Chinese).
徐洲,门学勇,姚忠凯.板条状马氏体组织的金相方法研究[J].物理测试,1984(6):18.
3 Grange R A. Strengthening steel by austenite grain refinement[J].ASM-Trans,1966,59(1):26.
4 Krauss G. Martensite in steel: Strength and structure[J].Materials Science & Engineering A,1999,s273-275(99):40.
5 Roberts M J. Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J].Metallurgical and Materials Transactions B,1970,1(12):3287.
6 Furuhara T, Morito S, Maki T. Morphology, substructure and crystallography of lath martensite in Fe-C alloys[J].Journal De Physique Ⅳ,2003,112(1):255.
7 Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel[J].Materials Science & Engineering A,2012,534:339.
8 Long S L, Liang Y L, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J].Materials Science & Engineering A,2016,676:38.
9 Zhao J W, Zhang W, Zou D N. Effect of quenching temperature and cooling manner on the property of the high speed steel roll[J].Foundry Technology,2005(10):14(in Chinese).
赵建伟,张威,邹德宁.淬火温度和冷却方式对高速钢轧辊性能的影响[J].铸造技术,2005(10):14.
10 Ma P, Li Q, Tang Z G, et al. Carbide dissolution and grain growth behavior of Cr5 steel used as cold work roller during austenitizing [J].Materials for Mechanical Engineering,2010,34(6):21(in Chinese).
马坪,李倩,唐志国,等.冷轧工作辊用Cr5钢奥氏体化时碳化物的溶解及晶粒长大行为[J].机械工程材料,2010,34(6):21.
11 Wang K, Wang D, Han F. Effect of sample thickness on the tensile behaviors of Fe-30Mn-3Si-3Al twinning-induced plasticity steel[J].Materials Science & Engineering A,2015,642(3801):249.
12 Gong Hai. New progress in the study of lath martensite[J].Editorial Office of Journal of Dalian Jiaotong University,1981(4):55(in Chinese).
贡海.板条马氏体研究的新进展[J].大连交通大学学报,1981(4):55.
13 Wang Chunfang, Wang Maoqiu, Shi Jie, et al. Effect of microstructure on the toughness of low alloy martensitic steel[J].Scripta Materialia,2008,58(6):492.
14 谭玉华,马跃新.马氏体新形态学[M].北京:冶金工业出版社,2013.
15 Xu Z Y. Effect of lath martensite morphology on the mechanical properties of steel[J].Heat Treatment,2009,24(3):1(in Chinese).
徐祖耀.条状马氏体形态对钢力学性质的影响[J].热处理,2009,24(3):1.
16 Liang Y, Long S, Xu P, et al. The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J].Materials Science & Engineering A,2017,695:154.
17 Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J].Materials Science & Engineering A,2016,676:38.
18 Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J].Materials Science & Engineering A,2006,s438-440(1):237.
19 Liu C M, Wang J J, Lin R R, et al. Role of small amounts of carbon in fine-grain strengthening of steels[J].Materials Science & Techno-logy,2001,9(3):301(in Chinese).
刘春明,王建军,林仁荣,等.微量碳在钢铁材料细晶强化中的作用[J].材料科学与工艺,2001,9(3):301.
20 Li H M, Zhang H J, Sun L J, et al. Strengthening mechanism of ultra-low-carbon martensite steel[J].Chinese Journal of Rare Metals,2010(s1):97(in Chinese).
李鸿美,张慧杰,孙力军,等.超低碳钢的强化机制研究[J].稀有金属,2010(s1):97.
21 Wang K L, Lu S Q, Li X, et al. Strengthening factors of microalloyed high strength low carbon bainitie steel[J].Materials for Mechanical Engineering,2009,33(12):27(in Chinese).
王克鲁,鲁世强,李鑫,等.微合金高强度低碳贝氏体钢中不同强化方式的作用[J].机械工程材料,2009,33(12):27.
22 Li Yongjun. Microstructure and strengthening mechanism of low carbon martensite[J].Journal of Materials Science and Engineering,1987(1):39(in Chinese).
黎永钧.低碳马氏体的组织结构及强韧化机理[J].材料科学与工程,1987(1):39.
23 Li J H, Fang F, Xi T H, et al. Strengthening mechanisms of microalloyed 3.5Ni steel[J].Journal of Materials Engineering,2010(5):1(in Chinese).
[1] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[2] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[3] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[4] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[5] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[6] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[7] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed