Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3645-3653    https://doi.org/10.11896/j.issn.1005-023X.2018.20.027
  中国材料大会——环境工程材料 |
环糊精基复合吸附剂的制备及对水中有机污染物去除的研究进展
于飞1,2, 崔天然1, 陈德贤2, 姚温浩2, 孙怡然3, 马杰3, 和怡雯4
1 上海海洋大学海洋生态与环境学院,上海 201306;
2 上海应用技术大学化学与环境工程学院,上海 201418;
3 同济大学污染控制与资源化研究国家重点实验室,上海 200092;
4 武汉大学化学与分子科学学院,武汉 430072;
Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water
YU Fei1,2, CUI Tianran1, CHEN Dexian2, YAO Wenhao2,SUN Yiran3,MA Jie3, HE Yiwen4
1 College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306;
2 School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
3 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092;
4 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072;
下载:  全 文 ( PDF ) ( 5924KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前水环境中有机物污染问题日趋严重,在诸多水处理技术中,吸附法具有成本低、效率高、简单易操作等优点,研发高效吸附剂是决定高效能吸附处理过程的关键因素。环糊精因其价格低廉、无毒、环境友好等优势在水污染处理领域具有广阔的应用前景。环糊精具有外部亲水、内部疏水的圆台状独特结构,利用内腔可与极性分子形成主-客体包含物,因此,被用于水溶液中有机污染物的去除,其外部结构中存在大量羟基,表现出良好的亲水性和优异的化学反应特性,能够实现对溶液中有机污染物的高效去除,通过多种化学修饰或各种材料的有效复合,达到环糊精基复合吸附剂的高效功能化拓展。本文总结了多种环糊精基复合材料的制备方法,重点综述其对水体中有机污染物高效吸附去除的应用研究,探讨环糊精基复合材料的研究趋势和研究热点,对其未来研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于飞
崔天然
陈德贤
姚温浩
孙怡然
马杰
和怡雯
关键词:  环糊精  吸附  有机物  复合材料    
Abstract: At present, the problem of aquatic organic pollution is becoming more and more serious. Among many technologies for water treatment, adsorption technology has broad application prospect in water treatment thanks to its merits, including low-cost, non-toxic, and environment-friendly etc. The research and development of high efficiency adsorbent is the key factor to determine the process of high efficiency adsorption treatment. At the same time, the cyclodextrin has an externally hydrophilic, internally hydrophobic, frustum-like unique structure that utilizes the inner cavity to form a host-guest inclusion with polar molecules, so they are used as adsorbents for the efficient removal of the organic pollutants from aqueous solutions. Cyclodextrins show a great hydrophilicity and excellent characteristics of the chemical reaction, and can be used for the efficient removal of ions in the solution due to their external structures with many hydroxyl groups. Meanwhile, cyclodextrins implement a variety of chemical modification and complete the functional expansion of cyclodextrin adsorbent. Now, the modification of cyclodextrins become a hot issue. This paper reviewes the preparation of cyclodextrin-based composite adsorbents, and mainly summarizes the applied research of the effective removal of organic pollutants in water. The research trend and research hot spot of cyclodextrin-based materials are discussed in this review. Finally, the future research direction are expected.
Key words:  cyclodextrin    adsorption    organic matter    composite material
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  X52  
基金资助: 国家自然科学基金(51408362)
作者简介:  于飞:女,1979年生,博士,副教授,主要从事新型高效环境修复材料的研究 E-mail:fyu@vip.163.com
引用本文:    
于飞, 崔天然, 陈德贤, 姚温浩, 孙怡然, 马杰, 和怡雯. 环糊精基复合吸附剂的制备及对水中有机污染物去除的研究进展[J]. 材料导报, 2018, 32(20): 3645-3653.
YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water. Materials Reports, 2018, 32(20): 3645-3653.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.027  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3645
1 Ali I. New generation adsorbents for water treatment[J]. Chemical Reviews,2012,112(10):5073.
2 Lumholdt L, Fourmentin S, Nielsen T T, et al. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropy-lene[J].Beilstein Journal of Organic Chemistry,2014,1(10):2743.
3 Abdolmaleki A, Mallakpour S, Borandeh S. Efficient heavy metal ion removal by triazinyl-beta-cyclodextrin functionalized iron nano-particles[J]. RSC Advances,2015,5(110):90602.
4 Hu X J, Liu Y G, Wang H, et al. Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid[J].Chemical Engineering Research & Design,2015,93:675.
5 Huang Z H, Wu Q L, Liu S X, et al. A novel biodegradable beta-cyclodextrin-based hydrogel for the removal of heavy metal ions[J].Carbohydrate Polymers,2013,97(2):496.
6 Kang H Y,Yang Z G,Huang X N.Removal of heavy metals using nanoscale zero-velent iron immobilized by sodium alginate/β-cyclodextrin[J]. Environmental Engineering,2015(6):144(in Chinese).
康海彦,杨治广,黄晓楠.海藻酸钠/β-环糊精固定化纳米FeO去除重金属的性能研究[J].环境工程,2015(6):144.
7 Ghemati D, Aliouche D. Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/beta-cyclodextrin polymer membranes[J]. Journal of Applied Spectroscopy,2014,81(2):257.
8 Yu L, Xue W, Cui L, et al. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal[J]. International Journal of Biological Macromolecules,2014,64:233.
9 Chen D L,Cao M L,Zhang X M,et al.Syntheis and dye adsorptivity of β-cyclodextrin polymer with a novel tricarboxylic acid as crosslin-king agent[J]. Petrochemical Technology,2014(2):210(in Chinese).
陈冬玲,曹曼丽,张晓梅,等.新型三元酸与β-环糊精交联聚合物的制备及其对染料吸附性能的研究[J].石油化工,2014(2):210.
10 刘志彬.磺化β-环糊精光催化降解有机磷农药久效磷的应用研究[J].广东化工,2015(18):18.
11 Kawano S, Kida T, Miyawaki K, et al. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil[J]. Environmental Science & Technology,2014,48(14):8094.
12 Yang Z, Liu J, Yao X, et al. Efficient removal of BTEX from aqueous solution by β-cyclodextrin modified poly(butyl methacrylate) resin[J].Separation and Purification Technology,2016,158:417.
13 Han Y Q,Zhou W J,Shen H M,et al. Progress in the immobilization of β-cyclodextrin and their application in adsorption of environmental pollutants[J]. Chinese Journal of Organic Chemistry,2016(2):248(in Chinese).
韩叶强,周文杰,沈海民,等.固载化β-环糊精吸附环境污染物的研究进展[J].有机化学,2016(2):248.
14 Shen H M,Fang H G,Wu H K,et al. Progress in the molecular morphology of cyclodextrin derivatives and their construction strategy[J]. Chemical Industry and Engineering Progress,2015(2):430(in Chinese).
沈海民,方红果,武宏科,等.环糊精衍生物的分子形态及其构筑策略研究进展[J].化工进展,2015(2):430.
15 Chen Q, Wen Y, Cang Y, et al. Selective removal of phenol by spherical particles of alpha-, beta-and gamma-cyclodextrin polymers: Kinetics and isothermal equilibrium[J].Frontiers of Chemical Science and Engineering,2013,7(2):162.
16 Alsbaiee A, Smith B J, Xiao L, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature,2016,529(7585):190.
17 Moulahcene L, Skiba M, Senhadji O, et al. Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers[J].Chemical Engineering Research & Design,2015,97:145.
18 Zhao F, Repo E, Yin D, et al. EDTA-cross-linked β-cyclodextrin: An environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes[J].Environmental Science & Technology,2015,49(17):10570.
19 Raoov M, Mohamad S, Abas M R. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodyna-mics[J]. Journal of Hazardous Materials,2013,263:501.
20 Kawano S, Kida T, Miyawaki K, et al. Adsorption capability of urethane-crosslinked heptakis (2,6-di-O-methyl)-beta-cyclodextrin polymers toward polychlorobiphenyls in nonpolar organic media[J]. Polymer Journal,2015,47(6):443.
21 Zhang X, Shi L, Xu G, et al. Synthesis of beta-cyclodextrin-calix 4 arene coupling product and its adsorption of basic fuchsin and methylene blue from water[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2013,75(1-2):147.
22 Surikumaran H, Mohamad S,Sarih N M. Molecular imprinted polymer of methacrylic acid functionalised beta-cyclodextrin for selective removal of 2,4-dichlorophenol[J]. International Journal of Molecular Sciences,2014,15(4):6111.
23 Cheng J, Chang P R, Zheng P, et al. Characterization of magnetic carbon nanotube-cyclodextrin composite and its adsorption of dye[J]. Industrial & Engineering Chemistry Research,2014,53(4):1415.
24 Liu W, Jiang X Y, Chen X Q. A novel method of synthesizing cyclodextrin grafted multiwall carbon nanotubes/iron oxides and its adsorption of organic pollutant[J].Applied Surface Science,2014,320:764.
25 Wang D X, Liu L L, Jiang X Y, et al. Adsorbent for p-phenylene-diamine adsorption and removal based on graphene oxide functiona-lized with magnetic cyclodextrin[J].Applied Surface Science,2015,329:197.
26 Fan L, Luo C, Sun M, et al. Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J].Colloids and Surfaces B: Biointerfaces,2013,103:601.
27 Shen H M, Zhu G Y, Yu W B, et al. Surface immobilization of beta-cyclodextrin on hybrid silica and its fast adsorption performance of p-nitrophenol from the aqueous phase[J]. RSC Advances,2015,5(103):84410.
28 Carvalho L B D, Carvalho T G, Magriotis Z M, et al. Cyclodextrin/silica hybrid adsorbent for removal of methylene blue in aqueous media[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry,2014,78(1-4):77.
29 Xue X, Gu Q, Pan G, et al. Nanocage structure derived from sulfonated β-cyclodextrin intercalated layered double hydroxides and selective adsorption for phenol compounds[J].Inorganic Chemistry,2014,53(3):1521.
30 Zhang X B, Wang Y, Yan S T. Simultaneous removal of Co(Ⅱ) and 1-naphthol by core-shell structured Fe3O4@cyclodextrin magnetic nanoparticles[J].Carbohydrate Polymers,2014,114:521.
31 Ebadi A, Rafati A A. Preparation of silica mesoporous nanoparticles functionalized with β-cyclodextrin and its application for methylene blue removal[J].Journal of Molecular Liquids,2015,209(1):239.
32 Ennist J H, Gobrogge E A, Schlick K H, et al. Cyclodextrin-functionalized chromatographic materials tailored for reversible adsorption[J]. ACS Applied Materials & Interfaces,2014,6(20):18087.
33 Wang D, Liu L, Jiang X, et al. Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents[J].Colloids and Surfaces A,2015,466:166.
34 Li L, Fan L, Sun M, et al. Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. International journal of biological macromolecules,2013,58(7):169.
35 Hu J, Shao D, Chen C, et al. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite[J]. Journal of Hazardous Materials,2011,185(1):463.
36 Zhou Y, Gu X, Zhang R, et al. Removal of aniline from aqueous solution using pine sawdust modified with citric acid and β-cyclodextrin[J].Industrial & Engineering Chemistry Research,2014,53(2):887.
37 Hu Q, Gao D W, Pan H, et al. Equilibrium and kinetics of aniline adsorption onto crosslinked sawdust-cyclodextrin polymers[J]. RSC Advances,2014,4(75):40071.
38 Zha F,Li S G,Chang Y. Preparation and adsorption property of chitosan beads bearing β-cyclodextrin cross-linked by 1,6-hexameth-ylene diisocyanate[J]. Carbohydrate Polymers,2008,72(3):456.
39 Sawicki R, Mercier L.Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media[J].Environmental Science & Technology,2006,40(6):1978.
40 Chai K G,Ji H B. Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted β-cyclodextrin[J].Chemical Engineering Journal,2012,203:309.
41 Wang D,Liu L,Jiang X,et al.Adsorbent for P-phenylendediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin[J]. Applied Surface Science,2015,329:197.
42 Chalasani R,Vasudevan S. Cyclodextrin functionalized magnetic iron oxide nanocrystals: A host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media[J]. Journal of Mate-rials Chemistry,2012,22(30):14925.
43 Qin B,Yang K. Preparation of acetylated β-cyclodextrin polymer microspheres and it’s adsorption study[J]. Applied Chemical Industry,2016(4):645(in Chinese).
秦蓓,杨宽.乙酰化β-环糊精聚合物微球对α-萘酚的吸附性能研究[J].应用化工,2016(4):645.
44 Kono H, Onishi K, Nakamura T. Characterization and bisphenol A adsorption capacity of β-cyclodextrin-carboxymethylcellulose-based hydrogels[J].Carbohydrate Polymers,2013,98(1):784.
45 Yuan W Z, Shen J, Li L L, et al. Preparation of POSS-poly(ε-caprolactone)-β-cyclodextrin/Fe3O4 hybrid magnetic micelles for remo-val of bisphenol A from water[J]. Carbohydrate Polymers,2014,113:353.
46 Wang N J,Zhou L L,Guo J,et al.Adsorption of environmental pollutants using magnetic hybridnanoparticles modified with β-cyclodextrin[J]. Applied Surface Science,2014,305:267.
47 Kono H, Nakamura T. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity[J].Reactive & Functional Polymers,2013,73(8):1096.
48 王章慧,张培斌,胡帆等.用于去除水中有机微污染物的交联β-环糊精聚合物的制备及性能[C]//中国化学会2017全国高分子学术论文报告会.成都,2017.
49 Wang H J, Wang Y T, Zhou Y Q, et al. A facile removal of phenol in coking wastewater using beta-cyclodextrin modified with hexa-methylene diisocyanate[J]. Chinese Journal of Biochemistry and Molecular Biol,2013,11(6):82.
50 Hu S Y. Synthesis of M-xylylenediamine bridged bis (6-Amino-6-Deoxy-β-CD) and its sdsorption capacity for phenol[D]. Hengyang: University of South China,2015(in Chinese).
胡胜勇.1,3-二甲基氨基苯桥联β-环糊精的制备及其对苯酚的吸附性能研究[D].衡阳:南华大学,2015.
51 Shen H M, Zhu G Y, Yu W B, et al. Fast adsorption of p-nitrophenol from aqueous solution using beta-cyclodextrin grafted silica gel[J].Applied Surface Science,2015,356:1155.
52 Han J X,Xie K J,Du Z J,et al.β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater[J].Carbohydrate Polymers,2015,120:85.
53 Badruddoza A,Hazel G S S, Hidajat K,et al. Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue[J].Colloids and Surfaces A,2010,367:85.
54 Fan L, Zhang Y, Luo C, et al. Synthesis and characterization of magnetic beta-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue[J]. International Journal of Biological Macromolecules,2012,50(2):444.
55 Liu Y. Study on adsorption performance of β-cyclodextrin/poiyethy-leneimine bifunctional magnetic nanoparticles for removal of anionic dyes from aqueous solution[D].Kunming: Kunming University of Science and Technology,2013(in Chinese).
刘旸.β-环糊精/聚乙烯亚胺双功能化磁性纳米颗粒吸附水中阴离子染料的性能研究[D].昆明:昆明理工大学,2013.
56 Massaro M, Colletti C G, Lazzara G, et al. Synthesis and characte-rization of HNT-cyclodextrin nanosponges for enhanced dyes adsorption[J].ACS Sustainable Chemistry & Engineering,2017,5(4):3346.
57 Li X M, Zhou M J, Jia X,et al. Water-insoluble viologen-based β-cyclodextrin polymer for selective adsorption toward anionic dyes[J]. Reactive and Functional Polymers,2018,126:20.
58 Crini G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer[J]. Dyes and Pigments,2008,77(2):415.
59 Hai W. Preparation of novel β-cyclodextrin polymer and its adsorption properties to organic dyes [D].Nanchang: Nanchang Hangkong University, 2017(in Chinese).
海伟.基于β-环糊精新型聚合物的制备及对有机染料吸附性研究[D].南昌:南昌航空大学,2017.
60 Huang Z. Preparation of magnetic nanomaterial based on β-cyclodextrin modification and its adsorption property[D]. Lanzhou: Lanzhou University,2018(in Chinese).
黄峥.基于β-环糊精改性的磁性纳米材料的制备及其吸附性能的研究[D].兰州:兰州大学,2018.
61 Xie Y P,Yang G,Xing W H.Study on adsorption property of methy-lene blue by the magnetic chitosan microspheres modified with β-Cyclodextrin[J]. New Chemical Materials,2017(6):191(in Chinese).
谢亚平,杨刚,邢卫红.β-环糊精改性磁性壳聚糖微球对亚甲基蓝吸附性能研究[J].化工新型材料,2017(6):191.
62 Huang Y L,Wang Q Y. Preparation of β-cyclodextrin /cellulose acetate nanofibers and its application for dye wastewater taeatment[J]. Environmental Engineering, 2017(6):29(in Chinese).
黄永兰,王沁宇.β-环糊精/醋酸纤维素纳米纤维的制备及对染料废水的处理[J].环境工程,2017(6):29.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[5] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[8] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[9] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[12] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[13] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[14] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[15] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed