Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3654-3659    https://doi.org/10.11896/j.issn.1005-023X.2018.20.028
  中国材料大会——环境工程材料 |
过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用
阳锋, 杨淑颐, 魏子斐, 王莉淋
四川农业大学环境学院,四川省农业环境工程重点实验室,成都 611130;
Preparation and Application of Catalytic Material (Co3O4/ACF) for Peroxymonosulfate
YANG Feng, YANG Shuyi, WEI Zifei, WANG Lilin
Provincial Key Laboratory of Agricultural Environmental Engineering, College of Environmental Sciences,Sichuan Agricultural University, Chengdu 611130;
下载:  全 文 ( PDF ) ( 2856KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过改变溶剂热法和水热法中材料的配比和温度制备了18种四氧化三钴/活性炭纤维(Co3O4/ACF)复合材料,并将这些复合材料用于催化过一硫酸盐(PMS)降解染料橙黄Ⅱ。考察了制备材料的配比(Co2+和ACF)和温度对制得的Co3O4/ACF复合材料催化降解橙黄Ⅱ效率的影响,并采用X射线衍射仪、扫描电镜等对复合材料的元素组成和形貌进行了表征。结果表明:水热法制得的复合材料催化性能好,3 min内可完全降解100 mg/L橙黄Ⅱ。从表征结果可见,水热法能更有效地使Co3O4颗粒以纳米尺寸分散负载在ACF上。材料的配比对产品的催化降解效率无显著影响,温度对水热法制得的产品的催化降解效率影响不大。水热法在320 ℃条件下煅烧制得的复合材料催化性能好且ACF能基本保持结构完整,Co负载量约为17.2 mg/g。水热法制备的Co3O4/ACF复合材料循环利用性能优于溶剂热法制得的材料,在循环使用四次后,28 min内橙黄Ⅱ降解效率仍能达到99%。其高效降解与Co3O4/ACF和溶解态Co2+的催化作用均有关。正交试验表明,降解过程中时间对降解效果的影响最大,其次是PMS的浓度,催化材料的加入量对降解效率无明显影响。因此,在复合材料应用中,应保证充足的降解时间,并适当提高PMS的浓度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阳锋
杨淑颐
魏子斐
王莉淋
关键词:  催化降解  活性炭纤维  过一硫酸盐  橙黄Ⅱ  硫酸根自由基    
Abstract: Co3O4 nanoparticles were loaded on activated carbon fiber (ACF) by solvothermal method and hydrothermal met-hod. The ratios of Co2+ to ACF and reaction temperature were considered during preparation. 18 products (Co3O4/ACF) were prepared and applied in catalyzing peroxymonosulfate in order to degrade OrangeⅡ. X-ray diffraction and scanning electron microscope were used to characterize the composite materials. It was found that the material prepared by hydrothermal method showed good catalytic property, and it could degrade 100 mg/L OrangeⅡin 3 min. Co3O4 particles could load better on ACF surface by hydrothermal method. During preparation, the ratio of Co2+ to ACF had little effect on catalytic property of the product and the reaction temperature hardly had any effect on catalytic property of the product prepared by hydrothermal method. When heated at 320 ℃, Co3O4/ACF showed good catalytic property and it could keep unbroken. The loading amount of Co on ACF was around 17.2 mg/g. Co3O4/ACF prepared by hydrothermal method was better in recycling. After four cycles, the degradation efficiency of OrangeⅡ could still reach 99% within 28 min. The high degradation efficiency was the result of both Co3O4/ACF and dissolved Co2+. Orthogonal expe-riment showed degradation time played the most important part in degradation efficiency and the concentration of PMS followed. The amount of Co3O4/ACF had little effect on degradation efficiency. Thus, in the application of Co3O4/ACF in orangeⅡdegradation, sufficient reaction time is necessary. And the concentration of PMS should be considered as well.
Key words:  catalytic degradation    activated carbon fiber (ACF)    peroxymonosulfate    OrangeⅡ    sulfate radical
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  X52  
基金资助: 四川省科技计划项目(2017SZ0039)
作者简介:  阳锋:男,1992年生,硕士,研究方向为水污染控制 E-mail:525429208@qq.com 王莉淋:通信作者,女,1983年生,博士,副教授,主要从事环境材料、土壤和水污染控制的研究 E-mail:lilin.w26@sicau.edu.cn
引用本文:    
阳锋, 杨淑颐, 魏子斐, 王莉淋. 过硫酸氢盐催化材料(Co3O4/ACF)的制备及应用[J]. 材料导报, 2018, 32(20): 3654-3659.
YANG Feng, YANG Shuyi, WEI Zifei, WANG Lilin. Preparation and Application of Catalytic Material (Co3O4/ACF) for Peroxymonosulfate. Materials Reports, 2018, 32(20): 3654-3659.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.028  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3654
1 Ji F, Li C, Wei X, et al. Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B[J]. Chemical Engineering Journal,2013,231:434.
2 Sun H, Tian H, Hardjono Y, et al. Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol[J]. Catalysis Today,2012,186:63.
3 Shi P, Su R, Zhu S, et al. Supported cobalt oxide on graphene oxide: Highly efficient catalysts for the removal of orange Ⅱ from water[J]. Journal of Hazardous Materials,2012,229:331.
4 Tang D, Zhang G, Guo S. Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition[J]. Journal of Colloid & Interface Science,2015,454:44.
5 Khan J A, He X, Shah N S, et al. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82- and HSO5-[J]. Chemical Engineering Journal,2014,252:393.
6 Matzek L W, Carter K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere,2016,151:178.
7 Ismail L, Ferronato C, Fine L, et al. Elimination of sulfaclozine from water with SO4-· radicals: Evaluation of different persulfate activation methods[J]. Applied Catalysis B: Environmental,2016,201:573.
8 Oh W D, Dong Z, Lim T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental,2016,194:169.
9 Yang S, Li L, Xiao T, et al. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation[J]. Applied Surface Science,2016,383:142.
10 Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology,2003,37:4790.
11 Chen X, Chen J, Qiao X, et al. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using acid Orange 7 as a model compound[J]. Applied Catalysis B: Environmental,2008,80:116.
12 Xie X, Li Y, Liu Z, et al. Low-temperature oxidation of Co catalysed by Co3O4 nanorods[J]. Nature,2009,458:746.
13 Zheng J T, Zhu C S, Jiang B. Uses of activated carbon fibers and advanced oxidation technologies in the remediation of water[J]. New Carbon Materials,2015,30(6):519(in Chinese).
郑经堂,朱超胜,江波.活性炭纤维与高级氧化技术在水体修复领域的联合应用[J].新型炭材料,2015,30(6):519.
14 Deng J, Feng S, Zhang K, et al. Heterogeneous activation of pe-roxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH[J]. Chemical Engineering Journal,2016,308:505.
15 Yang S, Xiao T, Zhang J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of acid Orange 7 in aqueous solution[J]. Separation & Purification Technology,2015,143:19.
16 Zhang J, Shao X, Shi C, et al. Decolorization of acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon[J]. Chemical Engineering Journal,2013,232:259.
17 Yao Y, Cai Y, Wu G, et al. Sulfate radicals induced from peroxy-monosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water[J]. Journal of Hazardous Materials,2015,296:128.
18 Wang Z M, Chen J B, Zhang L M, et al. Activated carbon supported Co3O4 catalysts to activate peroxymonosulfate for Orange G degradation[J]. Environmental Science,2016,37(7):2591(in Chinese).
王忠明,陈家斌,张黎明,等.活性炭负载Co3O4活化过一硫酸盐降解金橙G[J].环境科学,2016,37(7):2591.
19 Feng S F, Deng S P, Du J W, et al. Heterogeneous activation of peroxymonosulfate with three-dimensional ordered mesoporous Co3O4 for the degradation of Rhodamine B[J]. Environmental Science,2016,37(11):4247(in Chinese).
冯善方,邓思萍,杜嘉雯,等.三维有序介孔Co3O4非均相活化单过硫酸氢钾降解罗丹明B[J].环境科学,2016,37(11):4247.
20 Ren J T, Shi P H, Zhu S B, et al. Degradation of acid Orange Ⅱ wastewater using Oxone catalyzed by Co3O4 supported on expanded graphite[J]. Environmental Pollution & Control,2013,35(3):85(in Chinese).
任金涛,时鹏辉,朱少波,等.膨胀石墨负载Co3O4催化过硫酸氢钾复合盐降解酸性橙Ⅱ的研究[J].环境污染与防治,2013,35(3):85.
21 Shi P, Dai X, Zheng H, et al. Synergistic catalysis of Co3O4 and graphene oxide on Co3O4/GO catalysts for degradation of OrangeⅡ in water by advanced oxidation technology based on sulfate radicals[J]. Chemical Engineering Journal,2014,240:264.
22 Khan A, Liao Z, Liu Y, et al. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst[J]. Journal of Hazardous Materials,2017,329:262.
23 Ren Y, Lin L, Ma J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental,2015,165:572.
24 Shi P, Su R, Wan F, et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of OrangeⅡ in water by advanced oxidation technology based on sulfate radicals[J]. Applied Catalysis B: Environmental,2012,123-124:265.
25 Huang M M, Mai W N, Li H S. Degradation of methyl orange by iron carbon micro-electrolysis Fe2+/K2S2O8[J]. Chinese Journal of Environmental Engineering,2014,8(3):935(in Chinese).
黄萌萌,买文宁,李海松.铁炭微电解Fe2+/K2S2O8降解甲基橙[J].环境工程学报,2014,8(3):935.
[1] 李严, 王欣, 黄金田. 沙柳活性炭纤维改性及其对铅离子的吸附性能[J]. 《材料导报》期刊社, 2018, 32(14): 2360-2365.
[2] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed