Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1870-1877    https://doi.org/10.11896/j.issn.1005-023X.2018.11.014
  材料综述 |
Al-Si合金变质元素及其交互作用
张佳虹,邢书明
北京交通大学机械与电子控制工程学院,北京 100044
Modifying Elements and Their Interaction in Al-Si Alloy
ZHANG Jiahong, XING Shuming
School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044
下载:  全 文 ( PDF ) ( 1833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铸造Al-Si合金具有轻量化、流动性好、气密性好、收缩率小和热膨胀系数低等优点,已成为铸造业中最受重视的结构材料之一。铸造Al-Si合金的力学性能主要取决于组织中的α-Al相、共晶硅、初生硅、金属间化合物、缺陷以及它们的形态、尺寸和分布,其中硅相和富Fe相的形貌、尺寸及分布对合金性能的影响尤为显著。未变质的Al-Si合金中针片状共晶硅和针状β-Fe相严重割裂基体,粗大块状初生硅和针片状共晶硅尖端和棱角部位产生应力集中,导致合金的性能尤其是塑性、强度和耐磨性显著降低。此外,硬脆的粗大初生硅还会加快机加工刀具的磨损,加工后零部件的表面光洁度也较差,无法满足实际生产的需要。
    快速凝固、电磁搅拌、超声处理、机械振动等特殊工艺技术虽然可以在一定程度上改善铸造铝硅合金的微观组织和性能,但是都需要专门的设备和特殊的条件,使其应用受到限制。变质处理不需要任何特殊设备,只需添加少量变质元素,就可以实现对其中α-Al相、共晶硅、富Fe相、细化初生硅等的有效调控,具有成本低、方法简单、效果显著等特点,已成为改善Al-Si合金组织、提高性能最有效的途径。然而,各变质元素的变质机理及它们之间的交互作用极其复杂,如何充分发挥各变质元素及它们之间积极的交互作用是当前的研究热点。
    近年来对单一变质元素的变质作用机理和效果的研究进展迅速,先后发现了Na、Sr、Sb、P、Ti、Mn和RE等都对铸造铝硅合金有一定的变质作用,并且对它们的变质时效性以及经济性都有了充分的认识。与此同时,也有许多研究者开始关注多元素的交互变质作用并在Sr-X、P-X、Mn-X、Ti-X等二元交互变质方面取得了重要的成果,使变质技术更加经济、有效和灵活。
    本文综述了铸造Al-Si合金常用单一变质元素的特点、变质作用机理和局限性,系统归纳了Sr、P、Ti、Mn和RE与其他元素间的交互作用规律,筛选出具有协同变质作用的二元/多元变质元素交互作用对,以期为深入探究二元/多元变质元素交互作用的机理,开发更高效、多样、绿色的复合变质剂及变质处理方法提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳虹
邢书明
关键词:  Al-Si合金  变质元素  交互作用    
Abstract: Casting Al-Si alloy has become one of the most important structural materials in the foundry industry due to its light weight, good fluidity, good gas-tightness, small shrinkage and low thermal expansion coefficient. The mechanical properties of the as-cast Al-Si alloy mainly depend on defects, morphology, size and distribution of the α-Al phase, the eutectic silicon, the primary silicon and the intermetallic compounds, among which the shape, size and distribution of the silicon phases and the Fe-rich phase have prominent influence upon alloy properties. Needle-like eutectic silicon and acicular β-Fe phases severely segregate the matrix in the undeformed Al-Si alloy, meanwhile the tips and corners of coarse bulk primary silicon and needle-like eutectic silicon are prone to stress concentration, which leads to deterioration in the properties of the alloy, especially plasticity, strength and wear resistance. In addition, the wear of machined tools will be aggravated by hard and brittle primary silicon, and the machined parts will also have poor surface finish, which are unsatisfactory for actual production.
    Although some special techniques such as rapid solidification, electromagnetic stirring, ultrasonic treatment and mechanical vibration, etc. can improve the microstructure and properties of cast Al-Si alloy to a certain extent, their applications are limited by the dependence on particular equipment and specific conditions. The modification treatment, with no device requirement, only involving a small amount of modifying elements, can achieve effective regulation of α-Al phase, eutectic silicon, Fe-rich phase and primary silicon, and thus has become the most effective approach to structure improvement and performance promotion for Al-Si alloy with the characteristics of low cost, simple process and remarkable effect. However, the modification mechanism of various elements and the interactions of them are extremely complicated, and hence have proved to be the research focus in this field.
    The cognition about single modifying elements’ action mechanism has been undergoing rapid progress in recent years, as Na, Sr, Sb, P, Ti, Mn and RE, etc. have been discovered to be moderately effective upon the modification of cast Al-Si alloy, and the research over their deterioration, timeliness and cost is exhaustive. Moreover, many researchers have turned to the multi-element modification and have made considerable strides in the study of binary elements interaction such as Sr-X, P-X, Mn-X and Ti-X, endowing the modification technology with greater cost efficiency, effectiveness and diversity.
    In this paper, the characteristics, mechanisms and limitations of single modifying elements for Al-Si alloy are depicted. The interaction rules of Sr, P, Ti, Mn and RE with other elements are systematically summarized. We illuminate some binary or multiple modifying elements which display synergistic modifying effect, and expect to benefit further exploration for the binary/multi-element interaction mechanism and provide reference for developing more efficient, diverse and green composite modifiers and the adapted modification methods.
Key words:  Al-Si alloy    modifying element    interaction
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TG146.2  
基金资助: 国家国际科技合作专项(2014DFA53050)
作者简介:  张佳虹:女,1990年生,博士研究生,研究方向为铝合金杂质元素有益化 E-mail:15116359@bjtu.edu.cn 邢书明:通信作者,男,1962年生,博士,教授,研究方向为铝合金材料加工 E-mail:smxing@bjtu.edu.cn
引用本文:    
张佳虹, 邢书明. Al-Si合金变质元素及其交互作用[J]. 《材料导报》期刊社, 2018, 32(11): 1870-1877.
ZHANG Jiahong, XING Shuming. Modifying Elements and Their Interaction in Al-Si Alloy. Materials Reports, 2018, 32(11): 1870-1877.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.014  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1870
1 Bjurenstedt A, Casari D, Seifeddine S, et al. In-situ study of morphology and growth of primary α-Al(FeMnCr)Si intermetallics in an Al-Si alloy[J].Acta Materialia,2017,130:1.
2 Kaya H, Aker A. Effect of alloying elements and growth rates on microstructure and mechanical properties in the directionally solidified Al-Si-X alloys[J].Journal of Alloys and Compounds,2017,694:145.
3 Kruglova A, Engstler M, Gaiselmann G, et al. 3D connectivity of eutectic Si as a key property defining strength of Al-Si alloys[J].Computational Materials Science,2017,120:99.
4 Roehling D J , Coughlin R D, Gibbs W J, et al. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J].Acta Materialia,2017,131:22.
5 Zou Q C, Jie J C, Sun J L, et al. Effect of Si content on separation and purification of the primary Si phase from hypereutectic Al-Si alloy using rotating magnetic field[J].Separation and Purification Technology,2015,142(4):101.
6 Xu J H. Eutectic Si-phase in Al-Si alloy modified by Na-salt[J].Journal of Aeronautieal Materials,2000,20(1):18.
7 Fatahalla N, Hafiz M, Abdulkhalek M. Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al-Si alloy modified with Na, Sb and Sr[J].Journal of Materials Science,1999,34(14):3555.
8 Barrirero J, Li J H, Engstler M, et al. Cluster formation at the Si/liquid interface in Sr and Na modified Al-Si alloys[J].Scripta Mate-rialia,2016,117:16.
9 Yu J M, Wanderka N, Miehe G, et al. Intermetallic phases in high purity Al-10Si-0.3Fe cast alloys with and without Sr modification studied by FIB tomography and TEM[J].Intermetallics,2016,72:53.
10 Liu X R, Zhang Y D, Beausir B, et al. Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al-12.7%Si alloys investigated by SEM/EBSD[J].Acta Materialia,2015,97:338.
11 Timelli G, Caliari D, Rakhmonov J. Influence of process parameters and Sr addition on the microstructure and casting defects of LPDC A356 alloy for engine blocks[J].Journal of Materials Science and Technology,2016,32:515.
12 Liu Q. Effect of antimony on the growth kinetics of high purity Al-Si alloys[J].Scripta Materialia,1998,38(7):1083.
13 Prasada R A K, Das K, Murty B S, et al. On the modification and segregation behavior of Sb in Al-7Si alloy during solidification[J].Materials Letters,2008,62(12-13):2013.
14 Cao F Y, Jia Y D, Prashanth K G, et al. Evolution of microstructure and mechanical properties of as-cast Al-50Si alloy due to heat treatment and P modifier content[J].Materials and Design,2015,74:150.
15 Liang S M, Schmid-Fetzer R. Phosphorus in Al-Si cast alloys: Thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data[J].Acta Materialia,2014,72:41.
16 Sofyan T B, Kharistal J D, Trijati L, et al. Grain refinement of AA333 aluminium cast alloy by Al-Ti granulated flux[J].Materials and Design,2010,33:S36.
17 Li X W, Cai Q Z, Zhao B Y, et al. Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition[J].Journal of Alloys and Compounds,2017,710:166.
18 Bidmeshkia C, Aboueia V, Saghafianb H, et al. Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys[J].Journal of Materials Research and Technology,2016,5(3):250.
19 Ceschinia L, Boromeia I, Morria A, et al. Microstructure, tensile and fatigue properties of the Al-10%Si-2%Cu alloy with different Fe and Mn content cast under controlled conditions[J].Journal of Materials Processing Technology,2009,209:5669.
20 Shi Z M, Wang Q, Shi Y T, et al. Microstructure and mechanical properties of Gd-modified A356 aluminum alloys[J].Journal of Rare Earths,2015,33(9):1004.
21 Li J H, Wang X D, Ludwig T H, et al. Modification of eutectic Si in Al-Si alloys with Eu addition[J].Acta Materialia,2015,84:153.
22 Tavitas-Medrano F J, Gruzleski J E, Samuel F H, et al. Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging[J].Materials Science and Engineering A,2008,480:356.
23 Eiken J, Apel M, Liang S M, et al. Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al-Si alloys: Combined thermodynamic computation and phase-field simulation[J].Acta Materialia,2015,98:152.
24 Tebiba M, Samuela A M, Ajersch F. Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy[J].Materials Characterization,2014,89:112.
25 Zuo M, Zhao D G, Teng X Y, et al. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys[J].Materials and Design,2013,47:857.
26 Sun Y, Liao H C, Sun G X. Influence of Zr on microstructures and properties of near-eutectic Al-Si casting alloys modified with Sr[J].The Chinese Journal of Nonferrous Metals,2001(S1):9(in Chinese).
孙瑜,廖恒成,孙国雄.Zr对Sr变质近共晶Al-Si铸造合金组织和性能的影响[J].中国有色金属学报,2001(S1):9.
27 Qiu G R, Miao S N, Li X R. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy[J].Mate-rials and Design,2017,114(15):563.
28 Tang P, Li W F, Zhao Y J, et al. Influence of strontium and lanthanum simultaneous addition on microstructure and mechanical properties of the secondary Al-Si-Cu-Fe alloy[J].Journal of Rare Earths,2017,35(5):485.
29 Dong Y, Zheng R G, Lin X P. Investigation on the modification behavior of A356 alloy inoculated with a Sr-Y composite modifier[J].Journal of Rare Earths,2013,31(2):204.
30 Lua L, Nogita K, Dahle A K. Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys[J].Materials Science and Engineering A,2005,399:244.
31 Farahany S, Ourdjini A, Bakar T A A, et al. A new approach to assess the effects of Sr and Bi interaction in ADC12 Al-Si die casting alloy[J].Thermochimica Acta,2014,575:179.
32 Farahany S, Idris H M, Ourdjini A. Effect of bismuth and strontium interaction on the microstructure development, mechanical properties and fractography of asecondary Al-Si-Cu-Fe-Zn alloy[J].Mate-rials Science and Engineering A,2015,621:28.
33 Farahany S, Idris H M, Ourdjini A. Evaluations of antimony and strontium interaction in an Al-Si-Cu-Zn die cast alloy[J].Thermochimica Acta,2014,584:72.
34 Tokar M, Fegyverneki G, Mertinger V. Investigation of the common modification effect of strontium and antimony on the structure in case of Al-Si alloy[J].Materials Science Forum,2015,812:393.
35 Cui X L, Wu Y Y, Gao T, et al. Preparation of a novel Al-3B-5Sr alloy and its modification and refinement performance on A356 alloy[J].Journal of Alloys and Compounds,2014,615:906.
36 Samuel A M, Doty H W, Valtierra S, et al.Effect of grain refining and Sr-modification interactions on the impact toughness of Al-Si-Mg cast alloys[J].Materials and Design,2014,56:264.
37 Chen X, Geng H Y, Li Y X. Combined treatment of Sr and B and evaluation of refinment-modification levels for Al-7Si casting alloy[J].Acta Metallurgica Sinica,2006,42(11):1130(in Chinese).
陈祥,耿慧远,李言祥.B,Sr联合处理Al-7Si合金及细化变质效果评估[J].金属学报,2006,42(11):1130.
38 Liao H C, Sun G X. Mutual poisoning effect between Sr and B in Al-Si casting alloys[J].Scripta Materialia,2003,48:1035.
39 Yu L N, Liu X F, Ding H M. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB2 in near eutectic Al-Si alloy[J].Journal of Alloys and Compounds,2007,432(1-2):156.
40 Zhong G, Wu Z B, Qiu C, et al. Study on absorption rate of phosphorus for hypereutectic Al-Si alloy modified with Cu-P[J].Materials Science Forum,2014,794-796:112.
41 Dong T S, Cui C X, Liu S J, et al. Influence of rapid solidification of Cu-P intermediate alloy on wear resistance of Al-Si alloy[J].Rare Metal Materials and Engineering,2008,37(4):686.
42 Guo J, Liu Y, Fan P X, et al. The modification of electroless deposited Ni-P alloy for hypereutectic Al-Si alloy[J].Journal of Alloys and Compounds,2010,495:45.
43 Zuo M, Zhao D G, Wang Z Q, et al. Complex modification of hype-reutectic Al-Si alloy by a new Al-Y-P alloy[J].Metals and Materials International,2015,21(4):646.
44 Zong Z C, Ge S J, Du K X, et al. Effect of P-Sb compound modification on microstructure of Al-Si alloy[J].Special Casting and Nonferrous Alloys,2016,36(7):762.
45 Wu S S, Tu X L, Fukuda Y, et al. Modification mechanism of hypereutectic Al-Si alloy with P-Na addition[J].Transactions of Nonferrous Metals Society of China,2003,13(6):1285.
46 Wang A Q, Zhang L J, Xie J P. Effects of cerium and phosphorus on microstructures and properties of hypereutectic Al-21%Si alloy[J].Journal of Rare Earths,2013,31(5):522.
47 Ludwig T H, Daehlen E S, Schaffer P L,et al. The effect of Ca and P interaction on the Al-Si eutectic in a hypoeutectic Al-Si alloy[J].Journal of Alloys and Compounds,2014,586:180.
48 Mao F, Yan G Y, Li J Q, et al. The interaction between Eu and P in high purity Al-7Si alloys[J].Materials Characterization,2016,120:129.
49 Liu X F, Qiao J G, Zhang X H, et al. Formation of (Can-x,Nax)Pm compounds in eutectic Al-Si piston alloys and invalidation of phosphorus modification effect[J].Acta Metallurgica Sinica,2004,40(3):245(in Chinese).
刘相法,乔进国,张希华,等.共晶型Al-Si合金中(Can-x,Nax)Pm化合物的形成与磷变质失效分析[J].金属学报,2004,40(3):245.
50 Maxwell I, Hellawell A. A simple model for grain refinement during solidification[J].Acta Metallurgica,1975,23:229.
51 Tjong S C, Tam K F, Wu S Q. Thermal cycling characteristics on in-situ Al-based composites prepared by the reactive hot pressing[J].Composite Science and Technology,2003,63:89.
52 Li J G, Zhang B Q, Wang L, et al. Combined effect and its mechanism of Al-3wt.%Ti-4wt.%B and Al-10wt.%Sr alloy on microstructures of Al-Si-Cu alloy[J].Materials Science and Enginee-ring,2002,A328:169.
53 Liu G L, Si N C, Sun S C, et al. Effects of grain refining and modification on mechanical properties and microstructures of Al-7.5Si-4Cu cast alloy[J].Transactions of Nonferrous Metals Society of China,2014,24:946.
54 Tang X L, Peng J H, Huang F L, et al. Effect of mass fraction of mischmetal addition on microstructures of A356 alloy[J].The Chinese Journal of Nonferrous Metals,2010(11):2112(in Chinese).
唐小龙,彭继华,黄芳亮,等.混合稀土含量对A356铝合金组织结构的影响[J].中国有色金属学报,2010(11):2112.
55 Faraji M, Katgerman L. Microstructural analysis of modification and grain refinement in a hypoeutectic Al-Si alloy[J].International Journal of Cast Metals Research,2009,22(1-4):108.
56 Tang P, Li W F, Wang K, et al. Effect of Al-Ti-C alloy addition on microstructures and mechanical properties of cast eutectic Al-Si-Fe-Cu alloy[J].Materials and Design,2017,115:147.
57 Zhang Z G, Liu X F, Bian X F. Thermodynamics and kinetic of forming TiC in Al-Si-C system[J].Acta Metallurgica Sinica,2000(10):1025(in Chinese).
张作贵,刘相法,边秀房.Al-Ti-C系中TiC形成的热力学与动力学研究[J].金属学报,2000(10):1025.
58 Han Y F, Liu X F, Wang H M, et al. United modification of Al-24Si alloy by Al-P and Al-Ti-C alloys[J].The Chinese Journal of Nonferrous Metals,2003,13(1):92.
59 Xu C L, Wang H Y, Yang Y F, et al. Effect of Al-P-Ti-TiC-Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al-20wt.%Si alloy[J].Materials Science and Engineering A,2007,452-453:341.
60 Chakraborty M, Rao A K P, Das K, et al. Microstructural and wear behavior of hypoeutectic Al-Si alloy (LM25) grain refined and modified with Al-Ti-C-Sr alloy[J].Wear,2006,261(2):133.
61 Wang B, Xue S B, Ma C L, et al. Effect of combinative addition of Ti and Sr on modification of AA4043 welding wire and mechanical properties of AA6082 welded by TIG welding[J].Transactions of Nonferrous Metals Society of China,2017,27:272.
62 Suárez-Pea B, Asensio-Lozano J. Microstructure and mechanical property developments in Al-12Si gravity die castings after Ti and/or Sr additions[J].Materials Characterization,2006,57:218.
63 Shaha S K, Czerwinski F, Kasprzak W, et al. Monotonic and cyclic deformation behavior of the Al-Si-Cu-Mg cast alloy with micro-additions of Ti, V and Zr[J].International Journal of Fatigue,2015,70:383.
64 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions[J].Materials and Design,2014,58:89.
65 Shaha S K, Czerwinski F, Kasprzak W, et al. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Cr, Ti, V and Zr[J].Materials Science and Engineering A,2016,562:353.
66 Wang B, Xue S B,Wang J X, et al. Effect of combinative addition of mischmetal and titanium on the microstructure and mechanical pro-perties of hypoeutectic Al-Si alloys used for brazing and/or welding consumables[J].Journal of Rare Earths,2017,35(2):193.
67 Kumari S S S, Pillai R M, Rajan T P D, et al. Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy[J].Materials Science and Engineering A,2007,460-461:561.
68 Hou L G, Cui H, Cai Y H, et al. Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys[J].Materials Science and Engineering A,2009,527:85.
69 Fan C, Long S Y, Yang H D, et al. Effect of Mn and Ce on the Fe-rich intermetallics in secondary Al-Si alloys[J].Rare Metal Materials and Engineering,2014,43(3):660(in Chinese).
范超,龙思远,杨怀德,等.Mn和Ce对再生Al-Si合金富铁相的影响[J].稀有金属材料与工程,2014,43(3):660.
70 Huang X F, Feng K, Xie R. Effect of Mg and Mn element on microstructure and mechanical properties of Al-Si alloy[J].The Chinese Journal of Nonferrous Metals,2012,22(8):2196(in Chinese).
黄晓峰,冯凯,谢锐.Mg及Mn元素对Al-Si合金显微组织和力学性能的影响[J].中国有色金属学报,2012,22(8):2196.
71 Qiu K, Wang R C, Peng C Q, et al. Effects of Mn and Sn on microstructure of Al-7Si-Mg alloy modified by Sr and Al-5Ti-B[J].Tran-sactions of Nonferrous Metals Society of China,2015,25:3546.
72 Zhao G Z, Xu C X, Zhang J S, et al. Effect of Al-Mn-Ti-P-Cu and Mg on microstructure and wear resistance of hypereutectic Al-25Si alloy[J].The Chinese Journal of Nonferrous Metals,2011,21(12):3002(in Chinese).
赵高瞻,许春香,张金山,等.Al-Mn-Ti-P-Cu及Mg对过共晶Al-25Si合金组织及耐磨性能的影响[J].中国有色金属学报,2011,21(12): 3002.
73 Shaha S K, Czerwinski F, Kasprzak W, et al. Ageing characteristics and high-temperature tensile properties of Al-Si-Cu-Mg alloys with micro-additions of Mo and Mn[J].Materials Science and Engineering A,2017,684:726.
74 Bolzoni L, Nowak M, Babu N H. Grain refinement of Al-Si alloys by Nb-B inoculation. Part Ⅱ: Application to commercial alloys[J].Materials and Design,2015,66:376.
75 Song X C, An H, Zhang X J. Microstructure and mechanical properties of Al-7Si-0.7Mg alloy formed with an addition of (Pr+Ce)[J].Journal of Rare Earths,2017,35(4):412.
76 Li S W, Gao B, Xu G F, et al. Effects of Cu and La on microstructure and properties of Al-12.6Si alloy[J].Journal of Northeastern University(Natural Science),2012,33(11):1603(in Chinese).
李世伟,高波,徐赣峰,等.Cu和La对Al-12.6Si合金微观组织和性能的影响[J].东北大学学报(自然科学版),2012,33(11):1603.
77 Li D F, Cui C X, Wang X, et al. Microstructure evolution and enhanced mechanical properties of eutectic Al-Si die cast alloy by combined alloying Mg and La[J].Materials and Design,2016,90:820.
78 Yan H, Chen F H, Li Z H, et al. Microstructure and mechanical properties of AlSi10Cu3 alloy with (La+Yb) addition processed by heat treatment[J].Journal of Rare Earths,2016,34(9):938.
[1] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[2] 曹园章, 郭丽萍, 臧文洁, 张健, 薛晓丽. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149.
[3] 敖晓辉, 邢书明, 李少乾, 韩青友, 王如芬. 杂质元素对铝硅合金Si相形核影响的探讨[J]. 材料导报, 2018, 32(15): 2647-2652.
[4] 郭丽萍, 张健, 曹园章, 臧文洁. 超高性能水泥基材料复合盐侵蚀研究:合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性*[J]. CLDB, 2017, 31(23): 132-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed