Abstract: Belite-calcium sulphoaluminate-ferrite (BCSAF) cement clinker with lower CO2-emission was prepared from clay, bauxite and calcium carbonate. During the firing process, boron (B) and sodium (Na) were combinedly doped to make the belite (C2S) more reactive. By mixing the BCSAF clinker with proper amount of anhydrite, BCSAF cement was prepared. Then the effects that B and Na have on the macro-property (compressive strengths development) and micro-structure of cement paste were investigated. Rietveld quantitative phase analysis based on the X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray energy dispersive spectrometer were utilized to study the structure and composition of the cement clinkers and hydrated paste. Results figure out that a proper addition of B and Na helps to stabilize whether α′-C2S or other C2S structure with even higher activity at room temperature, thus reducing the β-C2S proportion. By the combined addition of B and Na, the C2S mineral in BCSAF clinker is activated, so the early-age compressive strength of the cement paste is improved.
吴梦雪, 姚武, 李晨, 凌桥. 硼、钠复合掺杂对贝利特-硫铝酸钙水泥性能及微观结构的影响*[J]. CLDB, 2017, 31(5): 128-133.
WU Mengxue, YAO Wu, LI Chen, LING Qiao. Effect of Combined Addition of Boron and Sodium on Property and Micro-structure of Beliet-sulphoaluminate Cement. Materials Reports, 2017, 31(5): 128-133.
1 Jewell S, Kimball M S. Mineral commodity summaries 2015[R]. Washington D C: U.S. Geological Survey and U.S. Department of Interior,2015.
2 Gartner E. Industrially interesting approaches to “low-CO2” cements[J]. Cem Concr Res,2004,34(9):1489.
3 Imbabi M S, Carrigan C, Mckenna S. Trends and developments in green cement and concrete technology[J]. Int J Sustainable Built Environ,2012,1(2):194.
4 De la Torre A G, Aranda M A G, De Aza A H, et al. Belite Portland clinkers: Synthesis and mineralogical analysis[J]. Boletín de la Sociedad Espanola de Cerámica y Vidrio,2005,44(3):185.
5 Winnefeld F, Barlag S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye'elimite[J]. J Thermal Anal Calorimetry,2010,101(3):949.
6 El-Didamony H, Khalil K A, Ahmed I A, et al. Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate phases using non-traditional nano-materials[J]. Constr Build Mater,2012,35(1):77.
7 Chen I A, Hargis C W, Juenger M C G. Understanding expansion in calcium sulfoaluminate-belite cements[J]. Cem Concr Res,2012,42(1):51.
8 Koumpouri D, Angelopoulos G N. Effect of boron waste and boric acid addition on the production of low energy belite cement[J]. Cem Concr Compos,2016,68:1.
9 Taylor H F. Cement chemistry[M]. 2nd ed. London: Thomas Telford,1997.
10 Quillin K. Performance of belite-sulfoaluminate cements[J]. Cem Concr Res,2001,31(9):1341.
11 García-Maté M, De la Torre A G, León-Reina L, et al. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement[J]. Cem Concr Compos,2015,55:53.
12 Wang J. Hydration mechanism of cements based on low-CO2 clinkers containing belite, ye′elimite and calcium alumino-ferrite[D]. Lille: Université des Sciences et Technologie de Lille,2010.
13 Alvarez-Pinazo G, Cuesta A, Garcia-Mate M, et al. Rietveld quantitative phase analysis of ye′elimite-containing cements[J]. Cem Concr Res,2012,42(7):960.
14 Mumme W G, Hill R J, Bushnell-Wye G, et al. Rietveld crystal structurerefinement, chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases[J]. Neues Jahrbuch fur Mineralogie. Abhandlungen,1995,169(1):35.
15 Calos N J, Kennard C H L, et al. Structure of calcium aluminate sulphate Ca4Al6O16S[J]. J Solid State Chem,1995,119(1):1.
16 Hartman M R, Berliner R. Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques Locality: Synthetic[J]. Cem Concr Res,2006,36(2):364.
17 Basso R, Della Giusta A, Zefiro L. A crystal chemical study of a Ti-containing hydrogarnet[J]. Neues Jahrbuch fuer Mineralogie, Monatshefte,1981(5):230.
18 Colville A A, Geller S. The crystal structure of brownmillerite, Ca2FeAlO5[J]. Acta Crystallographica Section B: Structural Crystallography Crystal Chem,1971,27(12):2311.
19 Wong-Ng W, Mcmurdie H F, Paretzkin B. Standard X-ray diffraction powder patterns of sixteen ceramic phases[J]. Powder Diffraction,1987,2(3):191.
20 Louisnathan S J. Refinement of the crystal structure of a natural gehlenite, Ca2Al(Al,Si)2O7[J]. Acta Crystallographica,1971,28:984.
21 Maslen E N, Streltsov V A, Streltsova N. Synchrotron X-ray study of the electron density in α-Al2O3[J]. Acta Crystallographica Section B: Structural Sci,1993,49(6):973.
22 Allmann R. Refinement of the hybrid layer structure [Ca2Al-(OH)6]+·[1/2SO4·3H2O]-[J]. Neues Jahrbuch fur Mineralogie, Monatshefte,1977,1977:136.
23 Koumpouri D, Angelopoulos G N. Effect of boron waste and boric acid addition on the production of low energy belite cement[J]. Cem Concr Compos,2016,68:1.
24 Su C, Suarez D L. Coordination of adsorbed boron: A FTIR spectroscopic study[J]. Environmental Sci Technol,1995,29(2):302.
25 Wan J, Cheng J, Lu P. The coordination state of B and Al of borosilicate glass by IR spectra[J]. J Wuhan University of Technology: Mater Sci Ed,2008,23(3):419.
26 Griesser K J, Beran A, Voll D, et al. Boron incorporation into mullite[J]. Mineralogy Petrology,2008,92(3):309.
27 Mendes A, Gates W P, Sanjayan J G, et al. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates[J]. Mater Structures,2011,44(10):1773.