Please wait a minute...
CLDB  2017, Vol. 31 Issue (5): 123-127    https://doi.org/10.11896/j.issn.1005-023X.2017.05.020
  水泥基材料 |
环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究
王博元, 姚武
同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Study on Early Hydration Process of an Environmentally-friendly Gypsum-Cement-Pozzolan Binder System
WANG Boyuan, YAO Wu
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应用X射线衍射(X-ray diffraction,XRD)及热流仪研究了组分、水化环境对环保型石膏-水泥-火山灰胶凝体系(Gypsum-cement-pozzolan binder system,GCP)早期水化过程的影响。结果表明,胶凝体系水化后产物主要由钙矾石、生石膏、羟钙石、方解石以及非晶态CSH凝胶组成。随着水化龄期的延长,钙矾石的含量增加,而生石膏的含量减少。高效减水剂的掺入延缓了GCP胶凝体系的初期水化(0~70 h)。在原料中加入偏高岭土可以促进钙矾石的生成;而加入硅微粉则会抑制钙矾石的生成。羟钙石仅可在水化开始后的第一周内测得,之后会由于火山灰反应而被消耗。水中养护促进钙矾石的生成,阻碍试样与二氧化碳的接触,使得方解石的含量大幅下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博元
姚武
关键词:  石膏-水泥-火山灰胶凝体系  X射线衍射  热流计    
Abstract: The effect of composition and hydration condition of an environmentally-friendly gypsum-cement-pozzolan binder system (GCP binder system) on its early hydration process was studied by means of X-ray diffraction (XRD) and heat flow calorimeter. It was found that the main hydration products of the GCP-slurry after the early hydration were ettringite, gypsum, portlandite, calcite and amorphous CSH phase. The content of ettringtie increased over time whereas the content of gypsum decreased. Results from heat flow calorimeter indicated the retarding effect of superplasticizer on the hydration process within the first 70 h of GCP bin-dersystem. Metakaolin could improve the formation of ettringite whereas microsilica could hinder it. Portlandite could only be mea-sured within the first week after hydration due to the pozzolanic reaction. The underwater hydration condition could promote the formation of ettringite and prevent the contact between the sample and carbon dioxide as well, which could lead to the reduction of calcite content.
Key words:  gypsum-cement-pozzolan binder system (GCP)    X-ray diffraction (XRD)    heat flow calorimeter
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TB321  
通讯作者:  姚武:,男,1966年生,博士,教授,博士研究生导师,主要研究方向为功能材料和智能材料 E-mail: yaowuk@tongji.edu.cn   
作者简介:  王博元:男,1988年生,博士研究生,主要研究方向为水泥基材料及低场核磁共振测试方法 E-mail: georgabcdfg@hotmail.com
引用本文:    
王博元, 姚武. 环保型石膏-水泥-火山灰胶凝体系的早期水化过程研究[J]. CLDB, 2017, 31(5): 123-127.
WANG Boyuan, YAO Wu. Study on Early Hydration Process of an Environmentally-friendly Gypsum-Cement-Pozzolan Binder System. Materials Reports, 2017, 31(5): 123-127.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.020  或          https://www.mater-rep.com/CN/Y2017/V31/I5/123
1 Hendriks C A, Worrell E, De Jager D, et al. Emission reduction of greenhouse gases from the cement industry[C]// Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies.1998.
2 Pearce F. Green foundations[J]. New Sci, 2002,175(2351):39.
3 McLellan B C, Williams R P, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. J Cleaner Production,2011,19(9):1080.
4 Altmann H D, Winkler K G. Einsatz von Anhydritbaustoffen im Bauwesen der DDR[J]. Baustoffindustrie,1984,4:99.
5 Escalante-García J I, Rios-Escobar M, Gorokhovsky A, et al. Fluo-rgypsum binders with OPC and PFA additions, strength and reactivity as a function of component proportioning and temperature[J]. Cem Concr Compos,2008,30(2):88.
6 Yan P,et al. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement[J].Cem Concr Res,1999,29(3):349.
7 Zhvironaite J,Lasys A,et al.Investigations of composite anhydrite-cement pozzolana binding material[J].Tile Brick Int,1998,14(3):176.
8 Rietveld H M. A profile refinement method for nuclear and magnetic structure[J]. J Appl Crystallography,1969,2(2):65.
9 Ag D L T, Cabeza A, Calvente A, et al. Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction[J]. Anal Chem,2001,73(2):151.
10 Taylor J C, Hinczak I, Matulis C E. Rietveld full-profile quantification of Portland cement clinker: The importance of including a full crystallography of the major phase polymorphs[J]. Zhurnal Vyssheǐ Nervnoǐ Deiatelnosti Imeni I P Pavlova,2000,15(1):7.
11 Neubauer J, et al. Quantification of a mixture of synthetic alite and belite by the Rietveld method[J]. Mater Sci Forum,1996,228-231:807.
12 Guirado F, et al. Quantitative Rietveld analysis of aluminous cement clinker phases[J]. Cem Concr Res,2000,30(7):1023.
13 Pajares I, Del T Á G, Martínez-Ramírez S, et al. Quantitative analysis of mineralized white Portland clinkers: The structure of fluorellestadite[J]. Powder Diffraction,2002, 17(4):281.
14 Schmidt R, et al. Quantification of calcium sulpho-aluminate cement by Rietveld analysis[J].Mater Sic Forum,2000,321-324:1022.
15 Saoût G L, Lothenbach B, Hori A, et al. Hydration of Portland cement with additions of calcium sulfoaluminates[J]. Cem Concr Res,2013,43(1):81.
16 Torre A G D L, Aranda M A G. Accuracy in Rietveld quantitative phase analysis of Portland cements[J]. J Appl Crystallography,2003,36(5):1169.
17 Scrivener K L, Füllmann T, et al. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods[J]. Cem Concr Res,2004,34(9):1541.
18 Saoût G L, et al. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard[C]// International Congress on the Chemistry of Cem.Montréal,2007.
19 Stepkowska E T, Aviles M A, Blanes J M, et al. Gradual transformation of Ca(OH)2, into CaCO3, on cement hydration[J]. J Thermal Anal Calorimetry,2007,46(1):4886.
20 Gallner M. Gips-zement-puzzolan-bindemittel, untersuchungen zur dauerhaftigkeit und festigkeitsentwicklung[D]. Munich: Technical University of Munich,2012.
[1] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[2] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed