Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 116-120    https://doi.org/10.11896/j.issn.1005-023X.2017.010.024
  材料研究 |
低频电磁场对n-SiCp/2024复合材料组织与性能的影响*
高文林1,2,白耀芳3,王海龙1,2,孙刚1,2,陆政1,2
1 北京航空材料研究院, 北京100095;
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095;
3 北京北方车辆集团有限公司, 北京100072
Effect of Low Frequency Electromagnetic Casting on Microstructure and Properties of n-SiCp/2024 Aluminum Matrix Composite
GAO Wenlin1,2, BAI Yaofang3,WANG Hailong1,2, SUN Gang1,2, LU Zheng1,2
1 Beijing Institute of Aeronautical Materials, Beijing 100095;
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095;
3 Beijing North Vehicle Group Corporation, Beijing 100072
下载:  全 文 ( PDF ) ( 1273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别采用低频电磁铸造(LFEC)与传统半连续铸造(DC)制备n-SiCp/2024复合材料铸锭,并对铸锭进行挤压以及T6热处理。通过金相组织观察(OM)、TEM、室温力学性能测试等手段,分别研究了低频电磁铸造与传统半连续铸造工艺对n-SiCp/2024复合材料的微观组织、力学性能的影响情况。实验结果表明: DC制备的n-SiCp/2024复合材料铸锭表面局部存在偏析瘤,大多数n-SiCp团聚在晶界处,只有少数聚集在晶粒内部;LFEC制备的n-SiCp/2024复合材料铸锭组织晶界清晰,n-SiCp团聚现象基本消失,组织均匀,晶粒细化效果明显。LFEC制备工艺可以有效细化n-SiCp/2024复合材料铸锭的晶粒尺寸,其电磁搅拌作用对消除n-SiCp颗粒的团聚现象有显著作用;与DC工艺相比,LFEC可同时提高复合材料的强度与延伸率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高文林
白耀芳
王海龙
孙刚
陆政
关键词:  低频电磁铸造  n-SiCp/2024复合材料  电磁搅拌  显微组织  力学性能    
Abstract: The research studied two different kinds of n-SiCp/2024 aluminum matrix composite ingots, with hot backward extrusion and T6 heat treatment, which were processed by low frequency electromagnetic casting (LFEC) and conventional semi-continuous casting (DC) respectively. The OM, TEM, and tensile test were adopted to study the microstructure and mechanical properties variations of the two different kinds of n-SiCp/2024 aluminum matrix composites. The research proved that there were segregations on part of the DC processed n-SiCp/2024 aluminum matrix composite ingots' surface. Most of them located near the grain boundaries in clumps, while only very little of them located within the grain. The LFEC processed n-SiCp/2024 aluminum matrix composite, however, had practically no n-SiCp in clumps and had a clear grain boundary, a uniform microstructure, and an obvious grain refining effect. LFEC process could refine the grain size of n-SiCp/2024 aluminum matrix composite ingots effectively, and its electromagnetic stirring relieved clumps of n-SiCp grain significantly. Compared with the conventional DC process, the LFEC process could improve both the strength and the ductility.
Key words:  LFEC    n-SiCp/2024 aluminum matrix composite    electromagnetic stirring    microstructure    mechanical properties
                    发布日期:  2018-05-08
ZTFLH:  TG146.2  
基金资助: *武汉国家脉冲强磁场科学中心(筹)资助(WHMFCK201103)
作者简介:  高文林:男,1986年生,硕士,工程师,主要从事铝合金材料研究E-mail:13241663121@163.com
引用本文:    
高文林,白耀芳,王海龙,孙刚,陆政,. 低频电磁场对n-SiCp/2024复合材料组织与性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 116-120.
GAO Wenlin,BAI Yaofang,WANG Hailong,SUN Gang,LU Zheng,. Effect of Low Frequency Electromagnetic Casting on Microstructure and Properties of n-SiCp/2024 Aluminum Matrix Composite. Materials Reports, 2017, 31(10): 116-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.024  或          http://www.mater-rep.com/CN/Y2017/V31/I10/116
1 Sudarshan M K,Surappa M K. Synthesis of fly ash particle reinforced A356 Al composites and their characterization [J].Mater Sci Eng A,2008,480(1):116.
2 Lee W B. A simplified approach for the simulation of metal flow in acylindrical sleeve die casting cavity [J].J Mater Process Technol,1999,91:116.
3 Zhang Datong,Li Yuanyuan,et al. A review on the process of aluminum matrix composites [J].Light Alloy Fabric Technol,2000,28(1):5(in Chinese).
张大童, 李元元,等.铝基复合材料研究进展[J].轻合金加工技术,2000,28(1):5.
4 Charles S, Arunachalam V P. Effect of particle inclusion on the mechanical properties of composites fabricated by liquid metallurgy [J].Indian J Eng Mater Sci,2003,10(8):301.
5 Yan Jie, Jiang Kaiyong. Fabrication with powder metallurgy and study on properties of TiC/Cu composites[J]. J Chongqing University of Technology,2012,26(9):9(in Chinese).
闫洁,江开勇. TiC/Cu复合材料的PM法制备与性能[J].重庆理工大学学报,2012,26(9):9.
6 Chen Yue, Xing Jiandong, Zhang Yongzhen, et al. The tribological behavior of aluminum-matrix composites reinforced with ceramic particulates in dry sliding against a semi-metallic frictional material[J].Tribology,2001,21(4):251(in Chinese).
陈跃,刑建东,张永振,等. 增强颗粒对铝基复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(4):251.
7 Su Hai,Gao Wenli,et al. Microstructure and mechanical properties of SiCp/2024 aluminum matrix composite synthesized by stir casting [J].Chinese J Nonferrous Met,2010,20(2):218(in Chinese).
苏海,高文理,等. 搅拌铸造SiCp/2024铝基复合材料显微组织与力学性能[J].中国有色金属学报,2010,20(2):218.
8 Yu Yujiang, Song Zuoyong, Dai Jinjie.The surface quality of and microstructure of 7050 aluminum alloy ingots by low frequency electromagnetic hot top casting[J].Light Met,2013(4):68(in Chinese).
禹玉江,宋作勇,代金杰.低频电磁热顶铸造7050铝合金铸锭的表面质量和组织[J].轻金属,2013(4):68.
9 Zhao Zhihao, Zhu Qingfeng,et al. Effect of heat treatment on the mechanical property of low frequency electromagnetic casting 2024 aluminum alloy [J].Foundry,2007,56(8):795(in Chinese).
赵志浩, 朱庆丰,等.热处理对低频电磁铸造2024铝合金力学性能的影响[J].铸造,2007,56(8):795.
10 Demazeau G. Introduction to metal matrix composites [J].J Solid State Chem,2001,25(14):299.
11 Chen Yuanfang, Guan Guohua, Jiang Huade, et al. Filling velocity studies of large low-pressure casting aluminum engine casting[J].J Chongqing University of Technology,2015,29(1):23(in Chinese).
陈元芳,关国华,江华德,等.大型铝合金发动机壳体低压铸造充型速度研究[J].重庆理工大学学报,2015,29(1):23.
12 Gao Wenlin, Ma Zhifeng,et al. Study on microstructures and pro-perties of n-SiCp/1350 composites extruded bars from low frequency electromagnetic casting ingots[J]. Mater Rev:Res,2014,28(7):24(in Chinese).
高文林,马志锋,等. n-SiCp/1350复合材料低频电磁铸锭挤压材组织与性能的研究[J].材料导报:研究篇,2014,28(7):24.
13 Nsher S, Brabazon D, Looney L. Computational and experimental analysis of particulate distribution during Al SiC MMC fabrication [J].Compos A,2007,38:719.
14 Zuo Yubo, Cui Jianzhong, Zhao Zhihao, et al. Structure and properties of 7050 alloy prepared through low frequency electromagnetic casting process[J].J Northeastern University,2008,29(1):78(in Chinese).
左玉波,崔建忠,赵志浩,等.低频电磁铸造7050铝合金的组织与性能[J].东北大学学报,2008,29(1):78.
15 Hu Ning, Li Dong, et al. Numerical analysis of mechanical properties of CNT reinforced nanocomposites[J].J Chongqing University of Technology,2011,25(5):42(in Chinese).
胡宁,李东,等.纳米碳管增强复合材料力学性能的数值分析[J].重庆理工大学学报,2011,25(5):42.
16 Zhao Mingjiu, Xiao Bolv, et al. Hot deformation behavior of silicon carbon particulates reinforced 2024 aluminum composite[J].Chinese J Nonferrous Metals,2002,12(Z1):139(in Chinese).
赵明久,肖伯率,等.碳化硅颗粒增强铝基复合材料SiCp/2024Al的热变形行为[J]. 中国有色金属学报,2002,12(Z1):139.
17 Ning Ailin, Liu Zhiyi,et al. Study on microstructure electric conductivity and stress on corrosion resistance of Al-Zn-Mg-Cu alloys[J].Trans Mater Heat Treat,2008,29(2):110(in Chinese).
宁爱林,刘志义,等.Al-Zn-Mg-Cu 合金组织和电导率及抗应力耐蚀性能研究[J].材料热处理学报,2008,29(2):110.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed