Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21050001-9    https://doi.org/10.11896/cldb.21050001
  无机非金属及其复合材料 |
胶体颗粒涂层干燥过程中的开裂行为:机理、抑制及应用
牛朝霞1,2, 袁帅洁1, 高晗1, 徐晔1,2,*
1 北京航空航天大学机械工程及自动化学院,北京 100191
2 北京航空航天大学软物质物理及其应用中心,北京 100191
Cracking in Drying Colloidal Coatings: Mechanism, Suppression and Applications
NIU Zhaoxia1,2, YUAN Shuaijie1, GAO Han1, XU Ye1,2,*
1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2 Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
下载:  全 文 ( PDF ) ( 5548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于胶体颗粒的涂层材料干燥固化成膜是一种简单方便的涂层制备方式,被广泛应用在保护性和功能性涂层领域。胶体颗粒涂层在干燥成膜过程中若控制不当容易发生开裂,导致涂层失效。因此,胶体颗粒涂层开裂的机理和抑制方法是工业涂层及功能薄膜材料应用领域关注的问题。
虽然工业界在胶体颗粒涂层制备技术的长期发展中积累了抑制开裂的实践经验,但由于固化成膜过程复杂多变,对于干燥导致开裂的机理研究仍不深入。随着环保标准和新型纳米颗粒功能涂层制备需求的提高,传统通过聚合物粘结剂抑制开裂的方法也不再适用。因此,近年来学术界和工业界在揭示干燥开裂的物理机理、探究开裂的影响因素方面开展了大量的理论和实验研究,并在此基础上开发了一些新的抑制胶体涂层开裂或稳定控制胶体涂层裂纹形貌的工艺技术。
近年来,研究者们在胶体涂层干燥开裂的裂纹驱动力和裂纹扩展动力学方面提出了一些理论模型,从胶体颗粒相互作用力、应变能与表面能平衡等角度揭示了裂纹产生的机理。已有大量的研究探索了胶体颗粒网络结构、涂层厚度、胶体颗粒弹性模量、基底约束等影响裂纹形成的主要因素。同时,这些研究提出了添加非球形颗粒、软硬颗粒混合、采用多层叠加等抑制干燥开裂及提高涂层性能的方法。此外,也有研究通过精确控制胶体涂层的裂纹形貌,将开裂的胶体涂层作为模版用于制作金属微纳结构及微纳通道。
本文综述了近年来胶体颗粒涂层开裂现象的相关研究,从涂层裂纹形态及裂纹扩展动力学入手,系统总结了影响胶体涂层开裂的四个因素,并归纳了抑制胶体颗粒涂层开裂的多种方法。此外,本文还介绍了近年来将胶体颗粒涂层中产生的裂纹应用在微纳加工领域的探索性研究。对胶体颗粒涂层开裂机理的进一步研究,可为开发绿色环保涂层和设计与制备高质量新型纳米颗粒涂层提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛朝霞
袁帅洁
高晗
徐晔
关键词:  胶体颗粒涂层  干燥开裂  抑制涂层开裂  应用裂纹    
Abstract: As one of the simple and convenient methods in preparing coatings, drying of colloidal suspension is widely used in protective and functional coatings. If not properly controlled, however, colloidal coatings are prone to cracking during the drying process, leading to the failure of coatings. Therefore, the mechanism of drying-induced cracking, as well as the methods to reduce cracking have been the focus of recent studies in both industrial and academic research of colloidal coatings.
Although empirical solutions for the crack suppression have been accumulated after many years of practice in preparing colloidal coating, the deep understanding of the drying-induced cracking is still lacking due to the complex film formation process in colloidal coatings. Conventional methods such as adding chemical binders in colloidal coatings to prevent cracking become unfeasiblefor coatings that need to meet higher environmental regulations and for the preparation of functional nanoparticle coatings. Therefore, extensive theoretical and experimental studies on the fundamental mechanism of drying-induced cracking have been carried out in academia and industry in recent years. Based on those findings, novel techniques for reducing and controlling crackings in drying colloidal coatings have been developed.
Theoretical models on the driving force and dynamics of drying-induced cracking have been proposed, aiming to reveal the mechanism of cracking from the perspectivesof the interaction between colloidal particles and the equilibrium between strain energy and surface energy. Many processing factors affecting the crack formation, including the colloidal particle network structure, thickness of coatings, the moduli of colloidal particles and the properties of substrates, were studied in order to understand how they affect the crack formation. Novel processing methods, including adding non-spherical particles, mixing of soft and hard particles, and multi-layer deposition, are proposed to suppress drying-induced cracking and improve the performance of coatings. On the other hand, recent studies proposed the utilization of coatings with cracks as the template to fabricate the micro-structure and nano-structure of metals and micro-channels and nano-channels by accurately controlling the morphology of drying-induced cracks of colloidal coatings.
This article reviewed recent studies on cracking in drying colloidal coatings. First, different crack morphologies are introduced and the mechanism and dynamics of cracking are discussed. Four main factors affecting the cracking of colloidal coatings and the corresponding methods for crack reduction are symmetrically summarized. In addition, the utilization of cracking in colloidal coating for alternative micro-fabrication and nano-fabrication is also explored. Further research on the cracking mechanism of colloidal particle coatings can provide design principles for the development of environment-friendly coatings and the design of high-quality functional nanoparticle coatings.
Key words:  colloidal particle coating    cracks in drying    suppress the cracks    applications of cracks
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  O648.14  
  O345  
基金资助: 国家自然科学基金(11674019;12072010)
通讯作者:  * ye.xu@buaa.edu.cn   
作者简介:  牛朝霞,2018年6月毕业于北京航空航天大学物理学院,获得理学硕士学位。现为北京航空航天大学机械工程及自动化学院博士研究生,主要研究领域为胶体颗粒涂层的干燥成膜及开裂行为。
徐晔,北京航空航天大学机械工程及自动化学院教授。2012年毕业于美国耶鲁大学机械工程及材料科学系,获工程与应用科学博士学位。主要研究方向为软物质微细观力学、涂层与界面力学、柔性纳米功能复合材料、微流控等。在PNAS、Physical Review Letters、Science、Soft Matter等国际顶尖杂志发表高水平论文30余篇。
引用本文:    
牛朝霞, 袁帅洁, 高晗, 徐晔. 胶体颗粒涂层干燥过程中的开裂行为:机理、抑制及应用[J]. 材料导报, 2022, 36(21): 21050001-9.
NIU Zhaoxia, YUAN Shuaijie, GAO Han, XU Ye. Cracking in Drying Colloidal Coatings: Mechanism, Suppression and Applications. Materials Reports, 2022, 36(21): 21050001-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050001  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21050001
1 Ise N, Sogami I. Structure Formation in Solution: Ionic Polymers and Colloidal Particles. Springer Science & Business Media, Germany, 2005, pp. 119.
2 Saunders A E, Shah P S, Sigman M B, et al. Nano Letters, 2004,4, 1943.
3 Russel W B. AIChE Journal, 2011,57, 1378.
4 Martinez C J, Lewis J A. Journal of the American Ceramic Society, 2002,85, 2409.
5 Amalvy J I, Percy M J, Armes S P, et al. Langmuir, 2001,17, 4770.
6 Ge D T, Yang X M, Chen Z, et al. Nanoscale, 2017,9, 17357.
7 Wu G X, Zhao Y P, Ge D T, et al. Advanced Materials Interfaces, 2021,8, 2000681.
8 Roberts C C, Francis L F. Journal of Coatings Technology and Research, 2013,10, 441.
9 Pauchard L, Abou B, Sekimoto K. Langmuir, 2009,25, 6672.
10 Trueman R E, Lago Domingues E, Emmett S N, et al. Journal of Colloid and Interface Science, 2012,377, 207.
11 Zhou J J, Man X K, Jiang Y, et al. Advanced Materials, 2017,29, 1703769.
12 Dufresne E R, Corwin E I, Greenblatt N A, et al. Physical Review Letters, 2003,91, 224501.
13 Holmes D M, Kumar R V, Clegg W J. Journal of the American Ceramic Society, 2006,89, 1908.
14 Kiatkirakajorn P C, Goehring L. Physical Review Letters, 2015,115, 088302.
15 Hull D, Caddock B D. Journal of Materials Science, 1999,34, 5707.
16 Niu Z X, Huang T, Chen Y. Frontiers of Physics, 2018,13, 137804.
17 Huang J, Juszkiewicz M, de Jeu W H, et al. Science, 2007,317, 650.
18 Tirumkudulu M S, Russel WB. Langmuir, 2005,21, 4938.
19 Singh K B, Tirumkudulu M S. Physical Review Letters, 2007,98, 218302.
20 Qiao J, Adams J, Johannsmann D. Langmuir, 2012,28, 8674.
21 Bacchin P, Brutin D, Davaille A, et al. The European Physical Journal E, 2018,41, 94.
22 Kakui T, Miyauchi T, Kamiya H. Journal of the European Ceramic Society, 2005,25, 655.
23 McDonald B C, de Gouw J A, Gilman J B, et al. Science, 2018,359, 760.
24 McLachlan M A, Johnson N P, De La Rue R M, et al. Journal of Mate-rials Chemistry, 2004,14, 144.
25 Lazarus V, Pauchard L. Soft Matter, 2011,7, 2552.
26 Pauchard L, Adda-Bedia M, Allain C, et al. Physical Review E, 2003,67, 027103.
27 Han W, Li B, Lin Z. ACS Nano, 2013,7, 6079.
28 Sendova M, Willis K. Applied Physics A, 2003,76, 957.
29 Jin Q, Tan P, Schofield A B, et al. The European Physical Journal E, 2013,36, 28.
30 Goehring L, Clegg W J, Routh A F. Soft Matter, 2011,7, 7984.
31 Mondal I, Kumar A, Rao K D M, et al. Journal of Physics and Chemistry of Solids, 2018,118, 232.
32 Jing G Y, Ma J. The Journal of Physical Chemistry B, 2012,116, 6225.
33 Muzzillo C P, Reese M O, Mansfield L M. Langmuir, 2020,36, 4630.
34 Zhang Y J. Tuning of self-assembly patterns induced by the evaporation of colloidal droplets. Ph. D. Thesis, Northwestern Polytechnical University, China, 2015 (in Chinese).
张永健. 胶体液滴的蒸发及其自组装图案调控机制研究. 博士学位论文. 西北工业大学, 2015.
35 Goehring L, Morris S W. Journal of Geophysical Research: Solid Earth, 2008,113, B10203.
36 Goehring L, Clegg W J, Routh A F. Langmuir, 2010,26, 9269.
37 Li B, Jiang B, Han W, et al. Angewandte Chemie International Edition, 2017,56, 4554.
38 Kiruthika S, Rao K D M, Kumar A, et al. Materials Research Express, 2014,1, 026301.
39 Chen R, Zhang L, Zang D, et al. Advances in Colloid and Interface Science, 2016,231, 1.
40 Annarelli C C, Fornazero J, Bert J, et al. The European Physical Journal E, 2001,5, 599.
41 Xu Y, German G K, Mertz A F, et al. Soft Matter, 2013,9, 3735.
42 Gauthier G, Lazarus V, Pauchard L. EPL (Europhysics Letters), 2010,89, 26002.
43 Zarzycki J. Journal of Non-Crystalline Solids, 1988,100, 359.
44 Griffith A A, Taylor G I. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Cha-racter, 1921,221, 163.
45 Birk-Braun N, Yunus K, Rees E J, et al. Physical Review E, 2017,95, 022610.
46 Dufresne E R, Stark D J, Greenblatt N A, et al. Langmuir, 2006,22, 7144.
47 Goehring L, Clegg W J, Routh A F. Physical Review Letters, 2013,110, 024301.
48 Zarzycki J, Prassas M, Phalippou J. Journal of Materials Science, 1982,17, 3371.
49 Routh A F. Reports on Progress in Physics, 2013,76, 046603.
50 White L R. Journal of Colloid and Interface Science, 1982,90, 536.
51 Russel W B, Wu N, Man W. Langmuir, 2008,24, 1721.
52 Allain C, Limat L. Physical Review Letters, 1995,74, 2981.
53 Schneider M, Maurath J, Fischer S B, et al. ACS Applied Materials & Interfaces, 2017,9, 11095.
54 Kanai T, Sawada T. Langmuir, 2009,25, 13315.
55 Sibrant A L R, Pauchard L. EPL (Europhysics Letters), 2016,116, 49002.
56 Singh K B, Bhosale L R, Tirumkudulu M S. Langmuir, 2009,25, 4284.
57 Pauchard L, Parisse F, Allain C. Physical Review E, 1999,59, 3737.
58 Chiu R C, Garino T J, Cima M J. Journal of the American Ceramic Society, 1993,76, 2257.
59 Chiu R C, Cima M J. Journal of the American Ceramic Society, 1993,76, 2769.
60 Yow H N, Goikoetxea M, Goehring L, et al. Journal of Colloid and Interface Science, 2010,352, 542.
61 van der Kooij H M, van de Kerkhof G T, Sprakel J. Soft Matter, 2016,12, 2858.
62 Sommer A P, Franke R P. Nano Letters, 2003,3, 573.
63 Lama H, Basavaraj M G, Satapathy D K. Soft Matter, 2017,13, 5445.
64 Ghosh U U, Chakraborty M, Bhandari A B, et al. Langmuir, 2015,31, 6001.
65 Lei H, Payne J A, McCormick A V, et al. Journal of Applied Polymer Science, 2001,81, 1000.
66 Spry A. Journal of the Geological Society of Australia, 1962,8, 191.
67 Smith M I, Sharp J S. Langmuir, 2011,27, 8009.
68 Carreras E S, Chabert F, Dunstan D E, et al. Journal of Colloid and Interface Science, 2007,313, 160.
69 Koga S, Inasawa S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,563, 95.
70 Lee W P, Routh A F. Industrial & Engineering Chemistry Research, 2006,45, 6996.
71 Keddie J, Routh A F. Fundamentals of Latex Film Formation: Processes and Properties. Springer Science & Business Media, 2010.
72 Hodges C S, Ding Y, Biggs S. Journal of Colloid and Interface Science, 2010,352, 99.
73 Qin F, Li M, Li X Y, et al. Applied Mechanics and Materials, 2015,731, 483.
74 Singh K B, Deoghare G, Tirumkudulu M S. Langmuir, 2009,25, 751.
75 Tzitzinou A, Keddie J L, Geurts J M, et al. Macromolecules, 2000,33, 2695.
76 Hasanzadeh I, Mahdavian A R, Salehi-Mobarakeh H. Progress in Organic Coatings, 2014,77, 1874.
77 Khan A K, Ray B C, Maiti J, et al. Pigment & Resin Technology, 2009,38, 159.
78 Geurts J, Bouman J, Overbeek A. Journal of Coatings Technology and Research, 2008,5, 57.
79 Limousin E, Ballard N, Asua J M. Journal of Applied Polymer Science, 2019,136, 47608.
80 Prosser J H, Brugarolas T, Lee S, et al. Nano Letters, 2012,12, 5287.
81 Gonzalez Z, Yus J, Sanchez-Herencia A J, et al. Journal of the European Ceramic Society, 2019,39, 366.
82 Rao K D M, Gupta R, Kulkarni G U. Advanced Materials Interfaces, 2014,1, 1400090.
83 Muzzillo C P, Reese M O, Mansfield L M. ACS Applied Materials & Interfaces, 2020,12, 25895.
84 Catrysse P B, Fan S. Nano Letters, 2010,10, 2944.
85 Jacobs D A, Catchpole K R, Beck F J, et al. Journal of Materials Che-mistry A, 2016,4, 4490.
86 Muzzillo C P. Solar Energy Materials and Solar Cells, 2017,169, 68.
87 Li B, Valverde L R, Zhang F, et al. ACS Applied Materials & Interfaces, 2017,9, 41586.
88 Pan S, Zou H, Wang A C, et al. Angewandte Chemie, 2021,59, 14942.
89 Xie J, Guo J, Wang D, et al. Advanced Materials Interfaces, 2021,8, 2000222.
90 Li Q, Jia Y, Yang X, et al. ACS Applied Materials & Interfaces, 2019,11, 31.
91 Mann D, Voogt S, Keul H, et al. Polymers, 2017,9, 475.
92 Lone S, Zhang J M, Vakarelski I U, et al. Langmuir, 2017,33, 2861.
93 Boles M A, Engel M, Talapin D V. Chemical Reviews, 2016,116, 11220.
94 Vogel N, Retsch M, Fustin CA, et al. Chemical Reviews, 2015,115, 6265.
95 Dalstein O, Gkaniatsou E, Sicard C, et al. Angewandte Chemie International Edition, 2017,56, 14011.
[1] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed