Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24062-24067    https://doi.org/10.11896/cldb.20090364
  无机非金属及其复合材料 |
低温玻璃钎料钎焊高体积分数SiCp/Al复合材料与电子玻璃的工艺及性能研究
楚军龙1, 高增1, 王振江1, 牛济泰1,2, 陶星空3
1 河南理工大学材料科学与工程学院,焦作 454003
2 河南晶泰航空航天高新材料科技有限公司,焦作 454003
3 大连理工大学材料科学与工程学院,大连 116024
Process and Properties of Brazing of High Volume SiCp/6063Al Composites and Electronic Glass with Low Temperature Glass Solder
CHU Junlong1, GAO Zeng1, WANG Zhenjiang1, NIU Jitai1,2, TAO Xingkong3
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
2 Henan Jingtai High-Novel Materials Ltd. of Science and Technology, Jiaozuo 454003, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 7206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究在大气环境下将PbO-ZnO-SiO2系非晶玻璃粉末和PbTiO3晶体粉末等比例混合均匀制得了复合玻璃钎料,实现了高体积分数SiCp/6063Al复合材料和DM305玻璃之间的连接。结果表明:当封接温度为480 ℃,保温30 min,复合玻璃钎料完成了预氧化后的复合材料与DM305玻璃之间的连接,接头无裂纹、气孔等缺陷,剪切强度为7.55 MPa,气密性为1×10-8 Pa·cm3/s,符合使用要求。在封接过程中,复合玻璃钎料与母材的氧化膜相溶,在复合材料一侧出现了Al元素的扩散现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
楚军龙
高增
王振江
牛济泰
陶星空
关键词:  SiCp/6063Al复合材料  DM305电子玻璃  复合玻璃钎料  力学性能    
Abstract: The composite glass brazing material prepared by mixing PbO-ZnO-SiO2 amorphous glass powder and PbTiO3 crystal powder uniformly in an atmospheric environment realizes the connection between high volume fraction SiCp/6063Al composite material and DM305 glass. The results show that when the sealing temperature is 480 ℃ and the holding time is 30 minutes, the composite glass brazing filler metal completes the connection between the pre-oxidized composite material and DM305 glass, the joint has no defects such as cracks and pores, and the shear strength is 7.55 MPa. The air tightness of 1×10-8 Pa·cm3/s meets the requirements of use. During the sealing process, the composite glass brazing filler metal is compatible with the oxide film of the base material, and Al element diffusion occurs on the side of the composite material.
Key words:  SiCp/6063Al    DM305 electronic glass    glass solder    mechanical properties
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG454  
基金资助: 河南省科技攻关项目(202102210036);中国博士后科学基金资助项目(2021M692891)
通讯作者:  mrgaozeng@163.com   
作者简介:  楚军龙,2018年6月毕业于河南理工大学,获得工学学士学位。现为河南理工大学材料科学与工程学院硕士研究生,在牛济泰教授的指导下从事铝基复合材料在电子封装材料领域的研究。高增,河南理工大学材料科学与工程学院讲师、硕士研究生导师。长期从事新型材料特种连接技术的基础理论与实际应用研究,尤其致力于复合材料的焊接、各类轻合金的绿色连接技术与数值仿真研究;参与国家自然科学基金1项,焦作市委托科研项目1项。近年来在国内外知名刊物上发表学术论文10余篇。
引用本文:    
楚军龙, 高增, 王振江, 牛济泰, 陶星空. 低温玻璃钎料钎焊高体积分数SiCp/Al复合材料与电子玻璃的工艺及性能研究[J]. 材料导报, 2021, 35(24): 24062-24067.
CHU Junlong, GAO Zeng, WANG Zhenjiang, NIU Jitai, TAO Xingkong. Process and Properties of Brazing of High Volume SiCp/6063Al Composites and Electronic Glass with Low Temperature Glass Solder. Materials Reports, 2021, 35(24): 24062-24067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090364  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24062
1 Elrefaey J. Janczak-Rusch M. Journal of Materials Processing Technology, 2014,214,2716.
2 Das S, Neogi S,Mukherjee M. Journal of Physic: Conference Series, 2020, 1579(1),012019.
3 Li S, Hu K, Hui W, et al. Journal of Alloys and Compounds, 2020, 827,154275.
4 Bangash M, Ubertalli G,Di Saverio D, et al. Metals, 2018, 8(8),614.
5 Lu G C,Chen C J. Transactions of Materials and Heat Treatment, 2015,36(11),194(in Chinese).
卢冠辰,陈长军,材料热处理学报,2015,36(11),194.
6 Xie Y M, Huang Y X, Wang F F, et al. Journal of Alloys and Compounds, 2020, 823,153741.
7 Chen B Q, Zhang G F. Journal of Materials Engineering and Perfor-mance, 2019, 28(8),5289.
8 Wang Z J, Gao Z, Chu J L, et al. Metals, 2020, 10(7),941.
9 Wu M, Qu X, He X, et al. Transactions of Nonferrous Metals Society of China, 2010,20(6),958.
10 Yu K K,Lin T S. Rare Metal Materials and Engineering, 2018,47(S1),440(in Chinese).
于凯凯,林铁松.稀有金属材料与工程,2018,47(S1),440.
11 Xu L,Chen Z R. Rare Metal Materials and Engineering, 2018,47(1),169(in Chinese).
许磊,陈志茹.稀有金属材料与工程,2018,47(1),169.
12 Ma Y R. Glass and Enamel, 1993, 21, 50(in Chinese).
马英仁.玻璃与搪瓷,1993, 21, 50.
13 Weltsch Z. Materials Science and Engineering, 2020, 903(1),012035.
14 Lin P P,He P. Journal of the Chinese Ceramic Society, 2020,48(3),408(in Chinese).
林盼盼,何鹏.硅酸盐学报,2020,48(3),408.
15 Chanmuang C,Naksata M,et al. Materials Science and Engineerin, 2007, 474(1),218.
16 Javed H, Sabato A G,Mansourkiaei M,et al. Energies, 2020, 13(14),3682.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed