Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 111-115    https://doi.org/10.11896/j.issn.1005-023X.2017.022.022
  材料研究 |
浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*
余为,薛海龙
燕山大学河北省重型装备与大型结构力学可靠性重点实验室,秦皇岛 066004
Effect of Soaking Corrosion on Flexural Properties of Foam Aluminum-Epoxy Composites
YU Wei, XUE Hailong
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004
下载:  全 文 ( PDF ) ( 630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了两种泡沫铝孔径的泡沫铝-环氧树脂复合材料。将试件分别浸泡于蒸馏水和海水中,得出了其吸湿率与浸泡时间的关系曲线。通过三点弯曲实验研究了浸泡腐蚀对复合材料弯曲强度和弯曲刚度等力学性能的影响。研究结果表明:泡沫铝-环氧树脂复合材料的吸湿率随浸泡时间的延长而逐渐增大,且试件在海水中浸泡的吸湿率大于在蒸馏水中的吸湿率。浸泡腐蚀大幅度地降低了泡沫铝-环氧树脂复合材料的弯曲力学性能。添加偶联剂的试件的弯曲强度和弯曲刚度均比无偶联剂试件的值更大,特别是对于泡沫铝孔径为2 mm的复合材料试件,添加偶联剂使得其弯曲强度和弯曲刚度分别提高了51.7%和65.4%。另外,1 mm孔径泡沫铝复合材料试件的弯曲强度和弯曲刚度均比2 mm孔径泡沫铝复合材料试件的值更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余为
薛海龙
关键词:  泡沫铝  环氧树脂  浸泡腐蚀  弯曲力学性能    
Abstract: Foam aluminum-epoxy composites with two types of foam aluminum pore size were prepared. The specimens were soaked in the distilled water and seawater respectively. The curves between moisture rate and soaking time were obtained. The effect on the flexural properties of specimens in soak corrosion were studied by three point bending experiment. It was found that the moisture rate of composites increased with the increase of soaking time, and the moisture rates of composites soaking in seawater were higher than that of composites soaking in distilled water. The flexural mechanical properties of foam aluminum-epoxy were greatly reduced by soaking corrosion. The flexural strength and stiffness of specimens with coupling agent were higher than that of specimens without coupling agent. Especially for the composites with foam aluminum pore size of 2 mm, the flexural strength and stiffness increased by 51.7% and 65.4%, respectively. Additionally, the flexural strength and stiffness of specimens with foam aluminum pore size of 1 mm are higher than that of specimens with foam aluminum pore size of 2 mm.
Key words:  foam aluminum    epoxy resin    soaking corrosion    flexural mechanical properties
发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *河北省自然科学基金青年基金(A2014203051)
作者简介:  余为:男,1979年生,博士,副教授,硕士研究生导师,研究方向为轻质多孔材料及复合材料E-mail:yuweichn@163.com;薛海龙:男,1990年生,硕士,研究方向为轻质多孔材料及复合材料E-mail:eig418801974@163.com
引用本文:    
余为,薛海龙. 浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 111-115.
YU Wei, XUE Hailong. Effect of Soaking Corrosion on Flexural Properties of Foam Aluminum-Epoxy Composites. Materials Reports, 2017, 31(22): 111-115.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.022  或          https://www.mater-rep.com/CN/Y2017/V31/I22/111
1 Banhart J. Manufacture characterization and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001,46:559.
2 Zhao W X, Zhao N Q, Guo X Q. Study progress for new type functional materials of foam aluminum[J]. Heat Treatment Metals, 2004,29(6):7(in Chinese).
赵万祥, 赵乃勤, 郭新权. 新型功能材料泡沫铝的研究进展[J]. 金属热处理, 2004,29(6):7.
3 Mu J C, Xi H F, Long Z Q. Study on the mechanics and energy absorb property of aluminum foam in different void rate and different aperture[J]. Experiment Mechan, 2009,24(3):223(in Chinese).
穆建春, 习会峰, 龙志勤. 不同孔隙率及孔径泡沫铝的力学与吸能特性研究[J]. 实验力学, 2009,24(3):223.
4 Tilbrook M T, Moon R J, Hoffman M. On the mechanical properties of alumina-epoxy composites with an interpenetrating network structure[J]. Mater Sci Eng A, 2005,393:170.
5 Yu Y H, Liang B. Calculation of effective elastic modulus of foamed aluminum/epoxy resin composite based on IPC material[J]. Mater Mechan Eng, 2008,32(11):90(in Chinese).
于英华, 梁冰. 基于网络交织复合材料预测泡沫铝/环氧树脂复合材料的有效弹性模量[J]. 机械工程材料, 2008,32(11):90.
6 Xie Y L, Wang R, Lin Z R, et al. Compressive mechanical properties of foam aluminum/modified epoxy composite[J]. Ordnance Mater Sci Eng, 2010, 33(5):49(in Chinese).
谢永亮, 王瑞, 林振荣, 等. 泡沫铝/改性环氧树脂复合材料压缩力学性能的试验研究[J]. 兵器材料科学与工程, 2010,33(5):49.
7 Yu W, Li H J, Zhao Z, et al. Compressive mechanical properties of foam aluminum-epoxy interpenetrating phase composites[J]. Acta Materiae Compositae Sinica, 2012,29(4):377(in Chinese).
余为, 李慧剑, 赵钊, 等. 泡沫铝/环氧树脂互穿相复合材料压缩力学性能[J]. 复合材料学报, 2012,29(4):377.
8 Yu W, Yang L, Liu X J, et al. Studies on elastic constants of foam aluminum/epoxy composites with two pore shapes[J]. J Yanshan University, 2013,37(3):278(in Chinese).
余为, 杨柳, 刘学瑾, 等. 两种孔隙形状泡沫铝/环氧树脂复合材料弹性常数研究[J]. 燕山大学学报, 2013,37(3):278.
9 Xu P, Yang K, Yu Y H. Research on damping property of foam aluminum-epoxy resin composite[J]. Hot Working Technology, 2013,42(16):110(in Chinese).
徐平, 杨昆, 于英华. 泡沫铝-环氧树脂复合材料阻尼性能的研究[J]. 热加工工艺, 2013,42(16):110.
10 Liu Y, Gong X L. Compressive behavior and energy absorption of metal porous polymer composite with interpenetrating network structure[J]. Trans Nonferrous Metals Soc China, 2006,16:439.
11 Qi M S, Zhang J N, Yang W, et al. Research on shock cushioning performance of foamed aluminium polyurethane composite structure[J]. Packag Eng, 2010,31(19):6(in Chinese).
齐明思, 张晋宁, 杨卫, 等. 泡沫铝-聚氨酯复合结构的缓冲性能研究[J]. 包装工程, 2010,31(19):6.
12 Xie W H, Du H T, Li S C. Experimental study on dynamic mechanical performance of polyurethane aluminum foams composites [J]. Acta Materiae Compositae Sinica, 2011,28(3):103(in Chinese).
谢卫红, 杜红涛, 李顺才. 聚氨酯泡沫铝复合材料动态力学实验[J]. 复合材料学报, 2011,28(3):103.
13 Wang R, Lin Z R, Lu Y S, et al. Dynamic compression experimental study and energy absorption of aluminum foam composite materials[J]. Ordnance Mater Sci Engi, 2010,33(6):40(in Chinese).
王瑞, 林振荣, 卢玉松, 等. 泡沫铝复合材料的动态压缩试验研究和吸能分析[J]. 兵器材料科学与工程, 2010,33(6):40.
14 Dukhan N, Rayess N, Hadley J. Characterization of aluminum foam-polypropylene interpenetrating phase composites: Flexural test results[J]. Mechan Mater, 2010,42(2):134.
15 Zhang Y, Chen L, Chen R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum[J]. Explosion Shock Waves, 2014,34(3):373(in Chinese).
张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究[J]. 爆炸与冲击, 2014,34(3):373.
16 Periasamy C, Tippur H V. Experimental measurements and numerical modeling of dynamic compression response of an interpenetrating phase composite foam[J]. Mechan Res Commun, 2012,43:57.
17 Li H J, Liu Z L, Yu W, et al. Electromagnetic shielding and mechanical properties of foam aluminum/epoxy composite[J]. Mater Rev:Res, 2015,29(4):150(in Chinese).
李慧剑, 刘泽良, 余为, 等. 泡沫铝/环氧树脂复合材料电磁屏蔽及力学性能实验[J]. 材料导报:研究篇, 2015,29(4):150.
18 Qi M, Sun L, Wang X, et al. High on shock-cushioning and energy-absorption-performance analysis on aluminum foam-polyurethane composite[J]. Metall Mining Industry, 2015,7(3):303.
19 Liu S, Li A, He S, et al. Cyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase composites[J]. Compos Part A, 2015,78:35.
20 Ray B C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites[J]. J Colloid Interface Sci, 2006,298(1):111.
21 Zhang H, Yang J H, Li H B, et al. Effects of hydrothermal aging on properties of epoxy resin[J]. Ordnance Mater Sci Eng, 2010,33(3):41(in Chinese).
张晖,阳建红,李海斌,等. 湿热老化环境对环氧树脂性能影响研究[J]. 兵器材料科学与工程, 2010,33(3):41.
22 Yu W, Li H J, Liang X, et al. Mechanical properties of HGM/epoxy and foam aluminum-HGM/epoxy with natural aging[J]. Acta Materiae Compositae Sinica, 2013,30(4):66(in Chinese).
余为,李慧剑,梁希,等. 自然老化对空心玻璃微珠/环氧树脂及泡沫铝-空心玻璃微珠/环氧树脂力学性能的影响[J]. 复合材料学报, 2013,30(4):66.
23 Doyle G, Pethrick R A. Environmental effects on the ageing of epoxy adhesive joints[J]. Int J Adhes Adhes, 2009,29(1):77.
24 Gao Y L, Zhou E P, Yun H L, et al. Aging behavior of epoxy/Al adhesive joint in sodium chloride aqueous solution[J]. Therm Osetting Resin, 2011,26(3):18(in Chinese).
高岩磊, 周二鹏, 郧海丽, 等. 环氧/铝胶接接头在氯化钠水溶液中的老化行为[J]. 热固性树脂, 2011,26(3):18.
25 Xu Z R, Gao Y L. Molecular simulation of moisture aging to epoxy resin/uranium[J]. Synthet Mater Aging Application, 2014,43(4):9(in Chinese).
徐作瑞, 高云亮. 环氧树脂/铝界面湿气老化性能的分子模拟[J]. 合成材料老化与应用, 2014,43(4):9.
[1] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[2] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[3] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[4] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[5] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[6] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[7] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[8] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[9] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[10] 朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
[11] 赵明明, 王继辉, 倪爱清, 陈俊磊, 王昌增, 邬志超. 阻燃改性环氧树脂的抗紫外老化研究[J]. 材料导报, 2024, 38(1): 22080234-7.
[12] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[13] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[14] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[15] 郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed