Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 25020012-11    https://doi.org/10.11896/cldb.25020012
  高分子与聚合物基复合材料 |
医疗用途导电水凝胶的研究进展
姚博星1,3, 马钊4, 杨宽1,2,*, 邱林1,2, 蔺子凡1,2, 王书磊1,2
1 西安医学院西安市多靶协同抗高血压创新药物研制重点实验室,西安 710021
2 西安医学院药学院药物研究所,西安 710021
3 成都医学院药学院,成都 610500
4 陕西盘龙药业集团股份有限公司,西安 710025
Research Progress of Conductive Hydrogels for Medical Applications
YAO Boxing1,3, MA Zhao4, YANG Kuan1,2,*, QIU Lin1,2, LIN Zifan1,2, WANG Shulei1,2
1 Xi’an Key Laboratory for Research and Development of Innovative Multi-Target Antihypertensive Drugs, Xi’an Medical University, Xi’an 710021, China
2 Institute of Drug Research, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China
3 School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
4 Shaanxi Panlong Pharmaceutical Group Limited by Share LTD., Xi’an 710025, China
下载:  全 文 ( PDF ) ( 42564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电水凝胶是一类将亲水基质与导电介质相结合的柔性复合材料,不仅继承了传统水凝胶的柔韧性和生物相容性,还具备卓越的导电性能。这种独特的材料特性使其在医疗监测、人工皮肤、可植入式生物电子学以及组织工程等多个领域展现出广阔的应用前景。本文着重介绍了导电水凝胶在医疗领域中的研究进展,概述了导电水凝胶的分类(电子导电水凝胶、离子导电水凝胶、本征型导电水凝胶)和制备方法,详细讨论了各类导电水凝胶的优缺点以及它们在提升力学性能与导电性方面的潜力,并指出了当前研究面临的挑战和未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚博星
马钊
杨宽
邱林
蔺子凡
王书磊
关键词:  导电水凝胶  导电高分子  柔性传感器  电刺激  生物医学材料    
Abstract: Conductive hydrogels, which integrate hydrophilic matrices with conductive media, not only retain the flexibility and biocompatibility of conventional hydrogels but also exhibit superior electrical conductivity. These unique material properties position them for broad application prospects in fields such as medical monitoring, artificial skin, implantable bioelectronics, and tissue engineering. This review focuses on the research progress of conductive hydrogels in the medical field, detailing their classification into electronic conductive hydrogels, ionic conductive hydrogels, and intrinsically conductive hydrogels, as well as the methods for their preparation. It discusses the advantages and disadvantages of each type of conductive hydrogel and their potential to improve the mechanical properties and conductivity of materials. It ends with a prospective discussion on issues challenging current research and future trends.
Key words:  conductive hydrogel    conductive polymer    flexible sensor    electrical stimulation    biomedical material
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  R331  
基金资助: 陕西省重点研发计划(2021ZDLSF03-05;2025SF-YBXM-098);陕西省教育厅青年创新团队(24JP165);陕西高校青年创新团队建设项目(2022-85);陕西省自然科学基础研究计划项目(2025JC-YBMS-970);西安医学院校级科技创新团队(2021TD03;2021TD07);陕西省教育厅服务地方专项(23JC060);西安医学院专创融合创新创业课程(2024ZCRH-04);西安医学院科研能力提升计划(2022NLTS057;2024NLTS118);西安医学院产学协同育人项目(2025CXHZ-09);西安医学院教师教育改革与教师发展研究项目(2025JFY-12)
通讯作者:  *杨宽,博士,西安医学院药学院讲师,主要从事生物医用材料的构建、结构调控及应用研究。yangkuan@xiyi.edu.cn   
作者简介:  姚博星,西安医学院与成都医学院联合培养硕士研究生,主要从事生物医用导电水凝胶制备及性能研究。
引用本文:    
姚博星, 马钊, 杨宽, 邱林, 蔺子凡, 王书磊. 医疗用途导电水凝胶的研究进展[J]. 材料导报, 2025, 39(21): 25020012-11.
YAO Boxing, MA Zhao, YANG Kuan, QIU Lin, LIN Zifan, WANG Shulei. Research Progress of Conductive Hydrogels for Medical Applications. Materials Reports, 2025, 39(21): 25020012-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020012  或          https://www.mater-rep.com/CN/Y2025/V39/I21/25020012
1 Zhi H, Zhang X B, Wang F Y, et al. ACS Applied Materials & Interfaces, 2022, 14(46), 52422.
2 Fu F F, Wang J L, Zeng H B, et al. ACS Materials Letters, 2020, 2(10), 1287.
3 Bai Y, Yan S Q, Wang Y B, et al. ACS Applied Materials & Interfaces, 2023, 15(41), 48744.
4 Liu Y C, Zou X, Luo B, et al. Chemical Engineering Journal, 2025, 503, 158288.
5 Wang S, Chen Y K, Zhou X J, et al. Materials Reports, 2024, 38(11), 247 (in Chinese).
王石, 陈昱恺, 周新甲, 等. 材料导报, 2024, 38(11), 247.
6 Wu Z J, Zhang L Y, Wang M, et al. Advanced Composites and Hybrid Materials, 2024, 8(1), 17.
7 Min J K, Jung Y J, Ahn J Y, et al. Advanced Materials, 2023, 35(52), e2211273.
8 Liu K Z, Han L, Tang P F, et al. Nano Letters, 2019, 19(12), 8343.
9 Kiran R G, Singh E, Hani U, et al. Journal of Controlled Release, 2023, 355, 709.
10 Rinoldi C, Lanzi M, Fiorelli R, et al. Biomacromolecules, 2021, 22(7), 3084.
11 Chen M H, Liu H, Chen X Y, et al. Applied Materials Today, 2024, 39, 102298.
12 Zhou Y, Wan C J, Yang Y S, et al. Advanced Functional Materials, 2019, 29(1), 1806220.
13 Slavin Y N, Asnis J, Häfeli U O, et al. Journal of Nanobiotechnology, 2017, 15(1), 65.
14 Yang Q, Chen R, Li M Z, et al. Advanced Functional Materials, 2024, 35(2), 2413080.
15 Zhang J, Yan K, Huang J R, et al. Advanced Functional Materials, 2024, 34(21), 2314433.
16 Wang S H, Yu L, Wang S S, et al. Nature Communications, 2022, 13(1), 3408.
17 Chen S X, Hang J R, Zhou Z X, et al. Industrial & Engineering Chemistry Research, 2021, 60(17), 6162.
18 Li J, Yu F, Chen G, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2023.
19 Ding Y H, Fu J, Xiong F Y, et al. Talanta, 2025, 282, 127004.
20 Wu W H, Yang K, Wu J, et al. Chemistry, 2025, 88(3), 241 (in Chinese).
吴文浩, 杨宽, 伍静, 等. 化学通报(中英文), 2025, 88(3), 241.
21 Sun J Y, Keplinger C, Whitesides G M, et al. Advanced Materials, 2014, 26(45), 7608.
22 Liu X T, Wu Z J, Jiang D W, et al. Advanced Composites and Hybrid Materials, 2022, 5(3), 1.
23 Li J H, Chen M J, Cheng S W, et al. Biomaterials, 2025, 315, 122958.
24 Asadikorayem M, Surman F, Weber P, et al. Advanced Healthcare Materials, 2024, 13(25), e2301831.
25 Wei L X, Yang Y, Qiu X Y, et al. Small, 2024, 20(50), e2405789.
26 Lee S Y, Lee Y, LeThi P, et al. Biomaterials Research, 2018, 22(1), 3.
27 Liu Y, Guo R, Wu T L, et al. Chemical Engineering Journal, 2021, 418, 129352.
28 Chen S, Huang J C, Wang H, et al. Chemical Engineering Journal, 2024, 501, 157589.
29 Jaramillo V, Arévalo D F, González-Hernández M, et al. Frontiers in Bioengineering and Biotechnology, 2024, 12, 1398052.
30 Chen L L, Wang W S, Lin Z F, et al. Journal of Nanobiotechnology, 2022, 20(1), 210.
31 Yang Z Z, You Y X, Liu X Y, et al. Journal of Nanobiotechnology, 2024, 22(1), 111.
32 Zhang Y, Li M, Wang Y C, et al. Bioactive Materials, 2023, 26, 323.
33 Zhu K, Jiang D W, Wang K, et al. Journal of Nanobiotechnology, 2022, 20(1), 211.
34 Choi C, Lee Y, Cho K W, et al. Accounts of Chemical Research, 2019, 52(1), 73.
35 Zhu S J, Yu C J, Liu N B, et al. Bioactive Materials, 2022, 13, 119.
36 Lopes P M P, Moldovan D, Fechete R, et al. Gels, 2022, 9(1), 18.
37 Deng J, Li J Y, Yan L Z, et al. International Journal of Biological Macromolecules, 2024, 278(P2), 134424.
38 McCoy T M, Turpin G, Teo B M, et al. Current Opinion in Colloid & Interface Science, 2019, 39, 98.
39 Cicuéndez M, Casarrubios L, Barroca N, et al. International Journal of Molecular Sciences, 2021, 22(13), 6701.
40 Jiang C X, Shi Q Z, Yang J, et al. Journal of Advanced Research, 2024, 63, 159.
41 Kaviani S, Talebi A, Labbaf S, et al. International Journal of Biological Macromolecules, 2024, 259, 129276.
42 Cao P L, Wang Y, Yang J, et al. Advanced Materials, 2024, 36(48), e2409632.
43 Liu L, Barber A H, Nuriel S, et al. Advanced Functional Materials, 2005, 15(6), 975.
44 Sun X, Qin Z H, Ye L, et al. Chemical Engineering Journal, 2020, 382, 122832.
45 Ye L J, Ji H C, Liu J, et al. Advanced Materials, 2021, 33(41), e2102981.
46 Wulf V, Bisker G. ACS Nano, 2024, 18(43), 29380.
47 Alvarez-Primo F, Anil K S, Manciu F S, et al. International Journal of Molecular Sciences, 2019, 20(19), 4802.
48 Xu L, Wang Y Y, Huang J, et al. Theranostics, 2020, 10(20), 8996.
49 Zheng Y K, Wei M, Wu H B, et al. Journal of Nanobiotechnology, 2022, 20(1), 328.
50 Huang H Y, Zhang X J, Dong Z C, et al. Journal of Colloid and Interface Science, 2022, 625, 817.
51 Wang C R, Jiang X, Kim H J, et al. Biomaterials, 2022, 285, 121479.
52 Peng L, An Y T, Xiang H J, et al. Nano Energy, 2024, 130, 110058.
53 Zheng Q Z, Chen C M, Liu Y, et al. International Journal of Nanomedicine, 2024, 19, 965.
54 Sattari S, Dadkhah T A, Adeli M. Polymers, 2018, 10(6), 660.
55 Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, et al. Materials Science and Engineering C, 2016, 63, 131.
56 Liang C Z, He J, Cao Y, et al. Journal of Biological Engineering, 2023, 17(1), 39.
57 Quan J X, Jiang X P, Ding T, et al. Chemical Engineering Journal, 2025, 503, 158320.
58 Liu D D, Bi S W, Wang H B, et al. Composites Part A, 2024, 180, 108065.
59 Zhang X K, Su Y, Xu J H, et al. Nano Energy, 2025, 133, 110484.
60 Yin J H, Pan S S, Guo X, et al. Nano-Micro Letters, 2021, 13(1), 30.
61 Yang C, Luo Y, Lin H, et al. ACS Nano. 2021, 15(1), 1086.
62 Ren D W, Zhang Y, Du B, et al. International Journal of Nanomedicine, 2024, 19, 4495.
63 Liu M X, Zheng L, Zha K K, et al. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1308184.
64 Zhang Y F, Xu Z S, Li M K, et al. Device, 2024, 2(3), 100253.
65 Lu Y, He W N, Cao T, et al. Scientific Reports, 2014, 4(1), 5792.
66 Tu S, Tian T, Zhang J S, et al. ACS Nano, 2024, 18(51), 34829.
67 Bao B, Hao J R, Bian X J, et al. Advanced Materials, 2017, 29(44), 1702926.
68 Seike M, Uda M, Suzuki T, et al. ACS Omega, 2022, 7(15), 13010.
69 Kulkarni G, Guha Ray P, Sunka K C, et al. ACS Applied Materials & Interfaces, 2024, 16(42), 56762.
70 Xuan H Y, Wu S Y, Jin Y, et al. Advanced Science, 2023, 10(28), e2302519.
71 Ali A, Hussain F, Tahir M F, et al. Polymers, 2022, 14(7), 1289.
72 Wang C Y, Zhang J, Xu H, et al. Carbohydrate Polymers, 2022, 295, 119890.
73 Gan D L, Han L, Wang M H, et al. ACS Applied Materials & Interfaces, 2018, 10(42), 36218.
74 Qin H L, Liu P, Chen C R, et al. Nature Communications, 2021, 12(1), 4297.
75 Sheng Y J, Li Z H, Gao D M, et al. ACS Applied Materials & Interfaces, 2024, 16(46), 63840.
76 Xu J P, Wong C W, Hsu S H. Chemistry of Materials, 2020, 32(24), 10407.
77 Fanzio P, Chang C T, Skolimowski M, et al. Sensors, 2017, 17(5), 1169.
78 Carcione R, Pescosolido F, Montaina L, et al. Gels, 2023, 9(10), 784.
79 Song H, Wang Y F, Fei Q Y, et al. Exploration, 2022, 2(4), 20220006.
80 Liu R Q, Bi S W, Zhang L N, et al. Journal of Materials Chemistry B, 2024, 12(40), 10346.
81 Pan L J, Yu G H, Zhai D Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24), 9287.
82 Zhang Y, Tao Y L, Wang K Q, et al. Journal of Applied Polymer Science, 2021, 138(26), e50628.
83 Aizamddin M F, Mahat M M, Zainal A Z, et al. Polymers, 2022, 14(13), 2617.
84 Zhao X, Li P, Guo B L, et al. Acta Biomaterialia, 2015, 26, 236.
85 Guruge A G, Makki H, Troisi A. Journal of Materials Chemistry C, 2024, 12(47), 19245.
86 Won D, Kim J, Choi J, et al. Science Advances, 2022, 8(23), eabo3209.
87 Yao B W, Wang H Y, Zhou Q Q, et al. Advanced Materials, 2017, 29(28), 1700974.
88 Lu B Y, Yuk H, Lin S T, et al. Nature Communications, 2019, 10(1), 1043.
89 Li G, Huang K X, Deng J, et al. Advanced Materials, 2022, 34(15), e2200261.
90 Castrejón-Comas V, Mataró N, Resina L, et al. Carbohydrate Polymers, 2025, 348, 122941.
91 Furlani F, Montanari M, Sangiorgi N, et al. Biomaterials Science, 2022, 10(8), 2040.
92 Han Y, Sun M Y, Lu X C, et al. Composites Part B, 2024, 273, 111241.
93 Wu H Y, Xiao H, Zeng X D, et al. Materials Reports, 2024, 38(19), 242 (in Chinese).
伍红雨, 肖海, 曾向东, 等. 材料导报, 2024, 38(19), 242.
[1] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[2] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[3] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[4] 邵艳秋, 任婷, 王迪, 姬旭, 柳林, 杨荟, 杨皓婷, 张吉振, 陶金龙, 孔娜. 可印刷柔性传感器在人体健康监测中的研究进展[J]. 材料导报, 2025, 39(12): 23120167-9.
[5] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[6] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[7] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[8] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[9] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[10] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[11] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[12] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[13] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[14] 王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed