Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080174-6    https://doi.org/10.11896/cldb.24080174
  高分子与聚合物基复合材料 |
硅酸钠浸渍改性对杉木渗透性能的影响
吴江1,2, 徐斌1,2, 刘玉仙3, 张源3, 李萍3, 左迎峰3,*
1 咸宁市公共检验检测中心,湖北 咸宁 437000
2 湖北省森工板材产品质量检验检测中心,湖北 咸宁 437000
3 中南林业科技大学材料与能源学院,长沙 410004
The Effect of Sodium Silicate Impregnation Modification on the Permeability of Chinese Fir
WU Jiang1,2, XU Bin1,2, LIU Yuxian3, ZHANG Yuan3, LI Ping3, ZUO Yingfeng3,*
1 Xianning Public Inspection and Testing Center, Xianning 437000, Hubei, China
2 Hubei Center of Inspection and Testing for Wood-based Panels Product and Wood Industry, Xianning 437000, Hubei, China
3 College of Materials and Energy, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 16846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高杉木的渗透性能,以低浓度硅酸钠为渗透改性剂,探究硅酸钠浓度、硅酸钠模数、陈化时间对杉木物理力学性能和渗透性能的影响,并获得最佳的渗透改性工艺。使用单因素试验探究硅酸钠浓度、硅酸钠模数、陈化时间对改性杉木渗透性能的影响,并通过扫描电镜等现代分析手段对改性杉木的微观形貌、化学结构等进行分析。通过单因素试验结果可知,当硅酸钠浓度为5%、硅酸钠模数为3.3、陈化时间为6 h时,处理得到的改性杉木吸水率相比未改性材提高65.93%。经过低浓度硅酸钠渗透改性后,杉木渗透性能相较于未改性材显著提高,且力学性能良好,因此在后续改性过程中相比未改性木更具优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴江
徐斌
刘玉仙
张源
李萍
左迎峰
关键词:  杉木  硅酸钠  浸渍改性  力学性能  渗透性    
Abstract: In order to improve the permeability of Chinese fir, the effects of sodium silicate concentration, sodium silicate modulus and aging time on the physical and mechanical properties and permeability of Chinese fir were investigated with low concentration sodium silicate as the osmotic modifier, and the best osmotic modification process was obtained. The effects of sodium silicate concentration, sodium silicate modulus and aging time on the permeability of modified Chinese fir were investigated by single factor test. The microstructure and chemical structure of modified Chinese fir were analyzed by modern analytical methods such as scanning electron microscopy. The results of single factor test showed that the water absorption of modified Chinese fir increased by 65.93% when the concentration of sodium silicate was 5%, the modulus of sodium silicate was 3.3 and the aging time was 6 h. After low concentration sodium silicate infiltration modification, the permeability of Chinese fir was significantly improved compared with that of unmodified wood, and the mechanical properties were good. Therefore, the modified wood had more advantages than the unmodified wood in the subsequent modification process.
Key words:  Chinese fir    sodium silicate    impregnation modification    mechanical property    permeability
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  S781.7  
基金资助: 国家自然科学基金青年项目(32201485);湖南省重点研发计划项目(2023NK2038);湖南省教育厅科学研究重点项目(22A0177);湖湘青年英才科技创新类(2023RC3159)
通讯作者:  *左迎峰,博士,中南林业科技大学材料与能源学院教授、博士研究生导师。目前主要从事木竹基复合材料、功能材料等方面的研究工作。zuoyf1986@163.com   
作者简介:  吴江,硕士,湖北省咸宁市公共检验检测中心党组书记、主任。目前主要从事森工板材质量与标准化工作。
引用本文:    
吴江, 徐斌, 刘玉仙, 张源, 李萍, 左迎峰. 硅酸钠浸渍改性对杉木渗透性能的影响[J]. 材料导报, 2025, 39(19): 24080174-6.
WU Jiang, XU Bin, LIU Yuxian, ZHANG Yuan, LI Ping, ZUO Yingfeng. The Effect of Sodium Silicate Impregnation Modification on the Permeability of Chinese Fir. Materials Reports, 2025, 39(19): 24080174-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080174  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080174
1 Lao W L, Li X L, Zhang R, et al. Chinese Journal of Wood Science and Technology, 2023, 37(2), 84 (in Chinese).
劳万里, 李晓玲, 张冉, 等. 木材科学与技术, 2023, 37(2), 84.
2 Hou M Z, Zhang D, Hou C. Furniture & Interiror Design, 2022, 29(8), 18 (in Chinese).
侯茂章, 张典, 侯晨. 家具与室内装饰, 2022, 29(8), 18.
3 Jian H Y, Wang Z H, Sun D L, et al. Furniture & Interiror Design, 2022, 29(12), 50 (in Chinese).
蹇鸿洋, 王张恒, 孙德林, 等. 家具与室内装饰, 2022, 29(12), 50.
4 Li P, Zuo Y F, Wu Y Q, et al. Journal of Forestry Engineering, 2016, 1(5), 133 (in Chinese).
李萍, 左迎峰, 吴义强, 等. 林业工程学报, 2016, 1(5), 133.
5 Wang F. Properties and mechanism of Chinese fir modified by phenol melamine urea formaldehyde resin and borates. Master's Thesis, Chinese Academy of Forestry, China, 2018 (in Chinese).
王飞. PMUF树脂复配硼化物改性杉木及其机理研究. 硕士学位论文, 中国林业科学研究院, 2018.
6 Xu M, Ma Q, Wang T L. Packaging Engineering, 2017, 38(1), 143 (in Chinese).
徐敏, 马青, 王天龙. 包装工程, 2017, 38(1), 143.
7 Wang W, Tian J F, Peng Y. China Forest Products Industry, 2019, 56(11), 52 (in Chinese).
王雯, 田健夫, 彭尧. 林产工业, 2019, 56(11), 52.
8 Li P, Zhang Y, Wu Y Q, et al. Journal of Beijing Forestry University, 2020, 42(9), 122 (in Chinese).
李萍, 张源, 吴义强, 等. 北京林业大学学报, 2020, 42(9), 122.
9 Zhou Y, Li P, Zhang Y, et al. Materials Reports, 2020, 34(18), 18171 (in Chinese).
周亚, 李萍, 张源, 等. 材料导报, 2020, 34(18), 18171.
10 Zhang Y, Bi X Q, Li P, et al. Spectroscopy and Spectral Analysis, 2022, 42(8), 2437 (in Chinese).
张源, 毕小茜, 李萍, 等. 光谱学与光谱分析, 2022, 42(8), 2437.
11 Li Y F, Liu Y X, Yu H P, et al. Scientia Silvae Sinicae, 2011, 47(2), 134 (in Chinese).
李永峰, 刘一星, 于海鹏, 等. 林业科学, 2011, 47(2), 134.
12 Li Y F, Liu Y X, Wang F H, et al. Scientia Silvae Sinicae, 2011, 47(5), 131 (in Chinese).
李永峰, 刘一星, 王逢瑚, 等. 林业科学, 2011, 47(5), 131.
13 Ahmed S A, Chun S K. Wood Science and Technology, 2011, 45(3), 487.
14 Zheng X, Cao J Z. Forestry Machinery & Woodworking Equipment, 2008(11), 33 (in Chinese).
郑昕, 曹金珍. 林业机械与木工设备, 2008(11), 33.
15 He X, Xiong H X, Xie J, et al. BioResources, 2017, 12(2), 3850.
16 Mao Y Q, Xu W, Zhan X X. China Forest Products Industry, 2020, 57(5), 7 (in Chinese).
毛逸群, 徐伟, 詹先旭. 林产工业, 2020, 57(5), 7.
17 Yan L, Cao J Z, Yu L P, et al. Forestry Machinery & Woodworking Equipment, 2008(3), 7 (in Chinese).
闫丽, 曹金珍, 余丽萍, 等. 林业机械与木工设备, 2008(3), 7.
18 Nguyen T T, Tran C C, Khanh Nguyen T V, et al. Holzforschung, 2024, 78(4), 257.
19 Wang F, Wu X M, Li H Y. Journal of Northeast Forestry University, 2023, 51(12), 120 (in Chinese).
王飞, 吴晓梅, 李含音. 东北林业大学学报, 2023, 51(12), 120.
20 Wang F, Wu X M, Li H Y. World Forestry Research, 2023, 36(5), 89 (in Chinese).
王飞, 吴晓梅, 李含音. 世界林业研究, 2023, 36(5), 89.
21 Matinfar M, Nychka J. Advances in Colloid and Interface Science, 2023, 103036.
22 Zhang Y, Bi X Q, Li P, et al. Wood Science and Technology, 2021, 55, 1781.
23 Segal L, Creely J J, Martin A E, et al. Textile Research Journal, 1959, 29, 786.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed