Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060179-14    https://doi.org/10.11896/cldb.24060179
  金属与金属基复合材料 |
激光辅助冷喷涂技术的研究与应用现状
陶莉晴1,2, 郭伟玲2,*, 王慧鹏1,*, 赵运才1, 马国政2, 王海斗2,3
1 江西理工大学机电工程学院,江西 赣州 341000
2 陆军装甲兵学院再制造技术国家重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research and Application Status of Laser-assisted Cold Spraying Technology
TAO Liqing1,2, GUO Weiling2,*, WANG Huipeng1,*, ZHAO Yuncai1, MA Guozheng2, WANG Haidou2,3
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 National Key Laboratory for Remanufacturing, Army Armored Force Institute, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
下载:  全 文 ( PDF ) ( 47225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冷喷涂技术是一种具有低温固态沉积特性的表面改性技术,喷涂过程中易产生冷作硬化、结合强度不高、孔隙率较大等缺陷。因此,将激光引入冷喷涂过程中,形成“冷喷涂+”复合技术,利用激光对基体与喷涂颗粒进行照射,起到对基体和喷涂颗粒进行加热软化的作用,增强喷涂颗粒的塑性变形能力,从而改善颗粒的沉积效率,提高涂层的结合强度,提升涂层的综合性能。本文对激光辅助冷喷涂技术的研究进展进行回顾和总结,归纳了单一冷喷涂技术与“冷喷涂+”技术的原理与分类;重点介绍了激光辅助冷喷涂复合技术的研究进展;分析了激光辅助冷喷涂技术的工艺影响参数;总结了激光辅助冷喷涂技术的实际应用领域,期望能为激光辅助冷喷涂技术的研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶莉晴
郭伟玲
王慧鹏
赵运才
马国政
王海斗
关键词:  冷喷涂  激光  复合技术  沉积原理  工艺参数    
Abstract: Cold spraying technology is a surface modification technology with low temperature solid deposition, the low temperature characteristic of which makes it easy to produce cold hardening, weak bonding strength and large porosity during the spraying process. Therefore, employing the laser in the cold spraying process to form a "cold spraying+" composite technology, which uses laser synchronous irradiation of the matrix and spray particles to achieve the heating and softening of the matrix and spray particles, improves the plastic deformation ability of the particles, thereby improving the deposition efficiency of the particles, enhancing the bonding strength of the coating, and improving the comprehensive performance of the coating. In this paper, the research progress of laser assisted cold spraying technology is reviewed and summarized, and the principle and classification of single cold spraying technology and "cold spraying+" technology are summarized. Laser assisted cold spraying composite technology and its influence parameters are emphatically analyzed. The practical application fields of laser assisted cold spraying technology are summarized. It is expected to provide reference for the research and application of laser assisted cold spraying technology.
Key words:  cold spraying    laser    composite technology    deposition technology    technological parameter
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TB33  
基金资助: 国家重点研发计划(2022YFB3706600);国家自然科学基金(52130509;52005511)
通讯作者:  郭伟玲,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。目前主要从事表面工程、冷喷涂技术等方面的研究工作。guoweiling_426@163.com;王慧鹏,江西理工大学机电工程学院副教授、硕士研究生导师。目前主要从事表面工程与再制造技术等方面的研究工作。wanghuipeng1983@126.com   
作者简介:  陶莉晴,江西理工大学机电工程学院硕士研究生,在赵运才教授、马国政副研究员和郭伟玲副研究员的指导下进行研究。目前主要研究领域为激光辅助冷喷涂技术。
引用本文:    
陶莉晴, 郭伟玲, 王慧鹏, 赵运才, 马国政, 王海斗. 激光辅助冷喷涂技术的研究与应用现状[J]. 材料导报, 2025, 39(16): 24060179-14.
TAO Liqing, GUO Weiling, WANG Huipeng, ZHAO Yuncai, MA Guozheng, WANG Haidou. Research and Application Status of Laser-assisted Cold Spraying Technology. Materials Reports, 2025, 39(16): 24060179-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060179  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060179
1 Alkhimov A P, Kosarev V F, Papyrin A N. Soviet Physics Doklady, 1990, 35, 1047.
2 Alkhimo A P, Papyrin A N, Kosarev V F, et al. U. S. patent, EP5302414, 1994.
3 Yin S, Cavaliere P, Aldwell B, et al. Additive Manufacturing, 2018, 21, 628.
4 Wu J, Jin H Z, Wu M J, et al. Materials Reports, 2003(1), 59(in Chinese).
吴杰, 金花子, 吴敏杰, 等. 材料导报, 2003(1), 59.
5 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116(4), 382.
6 Ogawa K, Ito K, Ichimura K, et al. Journal of Thermal Spray Technology, 2008, 17, 728.
7 Shi Z C, Liu D X, Zhang X Y, et al. Materials Reports, 2012, 26(17), 70(in Chinese).
石仲川, 刘德鑫, 张晓云, 等. 材料导报, 2012, 26(17), 70.
8 Guo W L, Xing Z G, Li P, et al. Materials Reports, 2024, 38(19), 23010049(in Chinese).
郭伟玲, 邢志国, 李鹏, 等. 材料导报, 2024, 38(19), 23010049.
9 Yang L J, Li Z X, Huang C L, et al. Materials Reports, 2018, 32(3), 412(in Chinese).
杨理京, 李争显, 黄春良, 等. 材料导报, 2018, 32(3), 412.
10 Li B, Yao J H, Zhang Q L, et al. Surface & Coatings Technology, 2015, 275, 58.
11 Luo F, Rocco L, Andrew C, et al. Iron and Steel Research Journal, 2013, 20(2), 52.
12 Raoelison R N, Verdy C H, Liao H. Materials & Design, 2017, 133, 266.
13 Guan Y D, Yuan B, Long L, et al. Materials Reports, 2008(5), 100(in Chinese).
关乐丁, 严彪, 龙玲, 等. 材料导报, 2008(5), 100.
14 Bu H Y, Lu C. Journal of Materials Engineering, 2010(1), 94(in Chinese).
卜恒勇, 卢晨. 材料工程, 2010(1), 94.
15 Yang K. Research on the non-uniformity and regulation of cold spray sediment organization and performance. Ph. D. Thesis, Northwestern Polytechnical University, China, 2019(in Chinese).
杨康. 冷喷涂沉积体组织与性能不均匀性及调控研究. 博士学位论文, 西北工业大学, 2019.
16 Xiong T Y. Machinist Metal Forming, 2003(9), 10(in Chinese).
熊天英. 机械工人(热加工), 2003(9), 10.
17 Klassen T, Gartner F, Schmidt T, et al. Materialwissenschaft und Werkstofftechnik, 2010, 41(7), 575.
18 Liao T Y, Biesiekierski A, Berndt C C, et al. Progress in Surface Science, 2022, 97(2), 100654.
19 Ma C C, Yu Y G, Zhang D M, et al. Thermal Spray Technology, 2020, 12(2), 11(in Chinese).
马春春, 于月光, 章德铭, 等. 热喷涂技术, 2020, 12(2), 11.
20 Julio V. Cold Spray in the Realm of Additive Manufacturing, 2020, 19.
21 Almangour B, Mongrain R, Irissou E, et al. Surface & Coatings Technology, 2013, 216(3), 297.
22 Sima A, Wu L, et al. Wear, 2024, 538, 205218.
23 Munagala V N V, Torgerson T B, Thomas W S, et al. Wear, 2019, 426, 357.
24 Photo courtesy of Plasma Giken Co. Ltd. [DB/OL]. [2021-02-21]. http://www. plasma. co. jp/en/.
25 Photo courtesy of VRC Metal Systems[DB/OL]. [2021- 02-21]. https://vrcmetalsystems. com/.
26 Singh H, Sidhu T S, Kalsi S B S, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35(3), 231.
27 Diab M, Xin P, Jahed H. Surface and Coatings Technology, 2017, 309, 423.
28 Feng L, Chang J L, Li D T, et al. Rare Metal Materials and Engineering, 2020, 49(6), 2009(in Chinese).
冯力, 畅继荣, 李洞亭, 等. 稀有金属材料与工程, 2020, 49(6), 2029.
29 Photo courtesy of centerline_LTD[DB/OL]. [2021-02-21]. https://www. supersonicspray. com/.
30 Photo courtesy of inovati[DB/OL]. [2021-02-21]. https://www. inovati. com/index. php.
31 Photo courtesy of obninsk center for powder spraying ltd[DB/OL]. [2021-02-21]. http://en. dymet. net/.
32 Ma K, Li C X. China Surface Engineering, 2020, 33(4), 26(in Chinese).
马凯, 李成新. 中国表面工程, 2020, 33(4), 26.
33 Jörg E, Tobias N, Dominik H, et al. Advanced Materials, 2020, 32(19), 1908104.
34 Ma K, Li C J, Li C X. Journal of Thermal Spray Technology, 2020, 30(3), 571.
35 Barmouz M, Givi M K. Applied Science & Manufacturing, 2011, 42(10), 1445.
36 Yang L J, Li Z H, Li B, et al. Chinese Journal of Lasers, 2015, 42(3), 227.
杨理京, 李祉宏, 李波, 等. 中国激光, 2015, 42(3), 227.
37 Wang M Y, Chang D X, Yu B Y, et al. Advanced Engineering Materials, 2023, 25(2), 2200955.
38 Chen W C. Process and properties of plasma-assisted low-pressure cold spraying copper coating. Master's Thesis, Shenyang University of Technology, China, 2022(in Chinese).
陈文超. 等离子辅助低压冷喷涂铜涂层工艺及性能. 硕士学位论文, 沈阳工业大学, 2022.
39 Zhou H X, Li C X, Ji G, et al. Journal of Alloys and Compounds, 2018, 766, 694.
40 Cai S. Study on preparation of Al-Zn coating based on cold spray-shot peening technology. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021(in Chinese).
蔡顺. 基于冷喷涂-喷丸复合工艺的Al-Zn涂层制备工艺技术研究. 硕士学位论文, 南京航空航天大学, 2021.
41 Bray M, Cockburn A, O’Neill W. Surface and Coatings Technology, 2010, 203(19), 2851.
42 Yao J H, Wu L J, Li B, et al. Chinese Journal of Lasers, 2019, 46(3), 9(in Chinese).
姚建华, 吴丽娟, 李波, 等. 中国激光, 2019, 46(3), 9.
43 Olakanmi E O, Doyoyo M. Journal of Thermal Spray Technology, 2014, 23(5), 765.
44 Pedro P, Miguel Ángel G M. Progress in Materials Science, 2022, 123, 100839.
45 Yuan L J, Luo F, Yao J H, et al. Applied Laser, 2012, 32(4), 331(in Chinese).
袁林江, 骆芳, 姚建华, 等. 应用激光, 2012, 32(4), 331.
46 Diao P Y, Wang F, Chu X, et al. Hot Working Technology, DOI:10. 14158/j. cnki. 1001-3814. 20223075(in Chinese).
刁鹏源, 王方, 褚欣, 等. 热加工工艺, DOI:10. 14158/j. cnki. 1001-3814. 20223075.
47 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116(4), 382.
48 Ma S Y, Liu M J, Yang G J, et al. China Surface Engineering, DOI:10. 11933/j. issn. 1007-9289. 20230327002(in Chinese).
马式跃, 刘梅军, 杨冠军, 等. 中国表面工程, DOI:10. 11933/j. issn. 1007-9289. 20230327002.
49 Dykhuizen R C, Smith M F. Journal of Thermal Spray Technology, 1998, 7(2), 205.
50 Morgan R, Fox P, Pattison J, et al. Materials Letters, 2004, 58(7), 1317.
51 Li P H. Research on WC/SS316L composite coating prepared by supersonic laser deposition. Master's Thesis, Zhejiang University of Technology, China, 2017(in Chinese).
李鹏辉. 超音速激光沉积WC/SS316L复合沉积层的研究. 硕士学位论文, 浙江工业大学, 2017.
52 Liu S D. Microstructure and wear resistance of wc/ni60 composite coatings prepared by supersonic laser deposition. Master's Thesis, Lanzhou University of Technology, China, 2018(in Chinese).
刘世铎, 超音速激光沉积WC/Ni60复合涂层组织与耐磨损性能研究. 硕士学位论文, 兰州理工大学, 2018.
53 Riveiro A, Lusquiños F, Comesaña R, et al. Applied Surface Science, 2007, 254(4), 926.
54 Zhang C, Zhang D B, Luo C, et al. Coatings, 2021, 11(3), 267.
55 Lupoi R, Sparkes M, Cockburn A, et al. Materials Letters, 2011, 65(21), 3205.
56 Yao J H, Yang L J, Li B, et al. Materials & Design, 2015, 83, 26.
57 Legoux J G, Guerreiro B, Jason D, et al. In:International Thermal Spray Conference and Exposition. Quebec City, 2021.
58 Qi Z W, Li Y M, Chu X, et al. Surface and Coatings Technology, 2024, 477, 130308.
59 Wang K, Zhao L J, Mao T L, et al. Materials Science and Engineering, 2023, 879, 145224.
60 Grujicic M, Zhao C L, DeRosset W S. Materials & Design, 2005, 25(8), 681.
61 Victor K C, Dennis J H, Surya P G D, et al. Journal of Thermal Spray Technology, 2011, 20(3), 425.
62 Gu S, Kamnis S. Surface and Coatings Technology, 2009, 203(22), 3485.
63 Venkatesh L, Naveen M C, Sundararajan G. Journal of Thermal Spray Technology, 2011, 20(5), 1009.
64 Ning X J, Jang J H, Kim H J. Applied Surface Science, 2008, 253(18), 7449.
65 Klinkov S V, Kosarev V F, Rein M. Aerospace Science and Technology, 2006, 9(7), 582.
66 Marrocco T, McCartney D G, Shipway P H, et al. Journal of Thermal Spray Technology, 2006, 15(2), 263.
67 Olakanmi E O, Tlotleng M, Meacock C, et al. Journal of Operations Management, 2013, 65(6), 776.
68 Riveiro A, Lusquios F, Comesaa R, et al. Applied Surface Science, 2007, 254(4), 926.
69 Zhang D Y, Cao X Y, Li C Y. Electromachining & Mould, 2016(3), 42(in Chinese).
张冬云, 曹玄扬, 李丛洋. 电加工与模具, 2016(3), 42.
70 Luo F, Zhao B, Yao J H. Acta Armamentarii, 2015, 36(11), 2157(in Chinese).
骆芳, 赵兵, 姚建华. 兵工学报, 2015, 36(11), 2157.
71 Huang X J, Wu L J, Li B, et al. Journal of Mechanical Engineering, 2020, 56(10), 78(in Chinese).
黄煊杰, 吴丽娟, 李波, 等. 机械工程学报, 2020, 56(10), 78.
72 Kulmala M, Vuoristo P. Surface and Coatings Technology, 2009, 202(18), 4503.
73 Gorunov A I, Gilmutdinov A K. Optics & Laser Technology, 2017, 88, 157.
74 Yao J H, Yang L J, Li B, et al. Materials & Design, 2015, 83, 26.
75 Yang L J, Li B, Yao J H, et al. Diamond & Related Materials, 2015, 58, 139.
76 You Q, Zhang D M, Yu Y G, et al. Thermal Spray Technology, 2018, 10(2), 15.
酉琪, 章德铭, 于月光, 等. 热喷涂技术, 2018, 10(2), 15.
77 Wang W L, Wu L J, Li B, et al. Surface Technology, 2020, 49(8), 324.
汪伟林, 吴丽娟, 李波, 等. 表面技术, 2020, 49(8), 324.
78 Li B, Wu L J, Zhang X, et al. China Surface Engineering, 2018, 31(5), 159.
李波, 吴丽娟, 张欣, 等. 中国表面工程, 2018, 31(5), 159.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 陈泰黎, 牛凡, 徐良辉, 陈新悦, 侯枭伟, 孙奖, 司艳, 方修洋, 蔡振兵. GH4169镍基高温合金的飞秒激光制孔性能研究[J]. 材料导报, 2025, 39(9): 24020029-7.
[3] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[4] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[5] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[6] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[7] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[8] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[9] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[10] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[11] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[12] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[13] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[14] 彭进, 许红巧, 王星星, 龙伟民, 张永振, 于晓凯. 激光深熔焊匙孔及焊接飞溅行为的数值模拟[J]. 材料导报, 2025, 39(3): 22030166-5.
[15] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed