Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060167-7    https://doi.org/10.11896/cldb.24060167
  金属与金属基复合材料 |
碳含量对孪晶诱发塑性钢高周疲劳行为的影响
孙威杰1, 刘帅1,*, 黄玖龙1, 李冬冬2, 袁泽博3, 张岩3, 冯运莉1
1 华北理工大学冶金与能源学院,河北 唐山 063210
2 华北理工大学机械工程学院,河北 唐山 063210
3 首钢京唐钢铁联合有限责任公司,河北 唐山 063210
Effect of Carbon Content on High Cycle Fatigue Behavior of Twinning-induced Plasticity Steel
SUN Weijie1, LIU Shuai1,*, HUANG Jiulong1, LI Dongdong2, YUAN Zebo3, ZHANG Yan3, FENG Yunli1
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
3 Shougang Jingtang United Iron and Steel Co., Ltd., Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 35128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对两种不同碳含量(0.6C、1.0C)的TWIP钢进行应力控制拉-压高周疲劳试验,结合不同尺度微观组织表征手段,研究了碳含量对Fe-Mn-C系TWIP钢高周疲劳寿命及组织演化的影响。结果表明:与0.6C钢相比,1.0C钢表现出更高的疲劳寿命及疲劳极限;组织分析发现,疲劳后0.6C钢中滑移带数量、密集程度以及多系滑移数量均高于1.0C钢;在无宏观缺陷前提下,疲劳裂纹易在软、硬位相晶粒相交处萌生,并经由晶界、退火孪晶界、滑移带扩展;靠近表面的金属夹杂物或表面缺陷造成应力集中,易形成疲劳裂纹源。碳在TWIP钢中起到提高层错能的作用,0.6C钢较低的层错能促进位错平面滑移,易产生大量位错塞积诱发裂纹萌生是其疲劳寿命降低的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙威杰
刘帅
黄玖龙
李冬冬
袁泽博
张岩
冯运莉
关键词:  高锰钢  孪晶诱发塑性钢  高周疲劳  滑移变形  层错能    
Abstract: In this work, stress-controlled fully reverse tension-compression fatigue tests were carried out to investigate the high cycle fatigue behavior of two different carbon content (0.6C, 1.0C) TWIP steels. The effects of carbon content on the high cycle fatigue properties and microstructure evolution of Fe-Mn-C TWIP steel were analyzed via different scale microscopic characterization. The results show that compared with 0.6C steel, 1.0C steel shows a higher fatigue life and a higher fatigue limit. Microstructure analysis revealed that the number of slip bands and dislocation density of 0.6C steel were higher than those of 1.0C steel. Fatigue cracks tend to initiate at the intersection of soft and hard phase grains and propagate along grain boundaries, annealing twins, and slip bands. Metal inclusions or surface defects near the surface cause stress concentration, which is easy to form fatigue crack source. Carbon plays a role in improving the stacking fault energy in TWIP steel, the lower stacking fault energy of 0.6C steel promotes planar slip of dislocations, leading to accumulation of dislocation pile-ups that trigger crack nucleation. This is the main reason for the reduction of fatigue life in 0.6C steel.
Key words:  high manganese steel    twinning-induced plasticity steel    high cycle fatigue    slip deformation    stacking fault energy
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TG156.2  
  TG335.12  
基金资助: 河北省创新能力提升计划项目(24461002D);国家自然科学基金(51801063);河北中央引导地方资助项目(236Z1014G);唐山市科技局资助项目(23130206E);华北理工大学重点科研项目(ZD-ST-202310-23)
通讯作者:  刘帅,博士,华北理工大学冶金与能源学院副教授、硕士研究生导师。目前主要从事先进钢铁材料的强韧化及疲劳破坏行为等方面的研究工作。sliu_ysu@163.com   
作者简介:  孙威杰,华北理工大学冶金与能源学院硕士研究生,目前主要从事孪晶诱发塑性钢疲劳行为的研究。
引用本文:    
孙威杰, 刘帅, 黄玖龙, 李冬冬, 袁泽博, 张岩, 冯运莉. 碳含量对孪晶诱发塑性钢高周疲劳行为的影响[J]. 材料导报, 2025, 39(16): 24060167-7.
SUN Weijie, LIU Shuai, HUANG Jiulong, LI Dongdong, YUAN Zebo, ZHANG Yan, FENG Yunli. Effect of Carbon Content on High Cycle Fatigue Behavior of Twinning-induced Plasticity Steel. Materials Reports, 2025, 39(16): 24060167-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060167  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060167
1 Suh D W. Material Science Technology, 2014, 30(10), 1131.
2 Wang C, Cai W, Sun C, et al. Materials Science and Engineering A, 2022, 835, 142673.
3 Guo X, Sun C, Wang C, et al. International Journal of Plasticity, 2021, 145, 103076.
4 Song W S, Lee H J, Lee J H, et al. International Journal of Fatigue, 2016, 85, 57.
5 Di S, Heinz B T, Michael V. International Journal of Fatigue, 2023, 174, 107737.
6 Guo P C, Qian L H, Meng J Y, et al. Journal of Materials Research and Technology, 2024, 30, 2086.
7 Mi Z L, Wu H P, Wu Y X, et al. Journal of Iron and Steel Research, 2015, 27(11), 48 (in Chinese).
米振莉, 吴海鹏, 吴彦欣, 等. 钢铁研究学报, 2015, 27(11), 48.
8 Shao C, Zhang P, Liu R, et al. Acta Materialia, 2016, 103, 781.
9 Wang X, Liang Z Y, Liu R D, et al. Materials Science & Engineering A, 2015, 647, 249.
10 Seo W, Jeong D, Sung H, et al. Materials Characterization, 2017, 124, 65.
11 Liu R, Zang Z J, Li L L, et al. Scientific Reports, 2015, 5(1), 9550.
12 Dan W, Zhang W, Huang T. Procedia Manufacturing, 2020, 50, 541.
13 Liu S, Qian L H, Meng J Y, et al. Materials Science and Engineering A, 2015, 639, 425.
14 Hamada A S, Karjalainen L P. Materials Science and Engineering, 2009, 517, 68.
15 Niendorf T, Lotze C, Canadinc D, et al. Materials Science and Enginee-ring A, 2008, 499(1), 518.
16 Hamada A S, Karjalainen L, et al. Metallurgical and Materials Transactions, 2010, 41A (5), 1102.
17 Hamada A S, Karjalainen L. Materials Science Engineering A, 2010, 527(21-22), 5715.
18 Vincent L, Roux L J, Taheri S. International Journal of Fatigue, 2011, 38, 84.
19 Kamaya M, Kawakubo M. International Journal of Fatigue, 2015, 74, 20.
20 Thompson A. Acta Metallurgica, 1972, 20(9), 1085.
21 Meggiolaro M, Miranda A, Castro J, et al. International Journal of Fatigue, 2005, 27(10), 1398.
22 Li M R, Yang Z G, Shi X B, et al. Heat Treatment of Metals, 2019, 44(11), 219 (in Chinese).
李茂仁, 杨振国, 史显波, 等. 金属热处理, 2019, 44(11), 219.
23 Subra S, translated by Wang Z G, et al. Fatigue of materials, National Defense Industry Press, China, 1993, pp. 201 (in Chinese).
Subra S著, 王中光等译. 材料的疲劳, 国防工业出版社, 1993, pp. 201.
24 Olson G B, Cohen M. Metallurgical Transactions A, 1976, 7(12), 1897.
25 Dumay A, Chateau J, Allain S, et al. Materials Science and Engineering A, 2006, 483, 184.
26 Mi Z L, Tang D, Yan L, et al. Journal of Materials Science and Technology, 2005, 21(4), 451.
27 Ding K, Wang Y F, Lei M, et al. Journal of Manufacturing Processes, 2022, 76, 365.
[1] 邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
[2] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[3] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[4] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[5] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[6] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[7] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[8] 韩基鸿, 张洋, 马亚玺, 刘力源, 杨忠波, 张中武. 纳米孪晶强化合金制备技术与力学性能研究进展[J]. 材料导报, 2022, 36(24): 21050108-14.
[9] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[10] 章小峰, 杨浩, 李家星, 阚中伟, 施琦, 黄贞益. 基于热力学理论的Fe-Mn-Al-C系低密度钢层错能计算模型[J]. 材料导报, 2018, 32(16): 2859-2864.
[11] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[12] 高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
[13] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[14] 周磊, 宋亚南, 王海斗, 李国禄, 张建军. 超高周疲劳的影响因素及疲劳机理的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 84-89.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed