Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 48-52    https://doi.org/10.11896/j.issn.1005-023X.2017.020.011
  材料研究 |
贝/马复相钢超高周疲劳行为及非夹杂起裂*
高古辉1, 陈倩如2,3, 郭浩冉1, 程骋1, 白秉哲1
1 北京交通大学机电学院,北京 100044;
2 西安石油大学石油工程学院,西安 710065;
3 川庆钻探长庆固井公司,西安 710018
Very High Cycle Fatigue Behaviors of Bainite/Martensite Multi-phase Steel and Mechanism of Non-inclusion Induced Crack Initiation
GAO Guhui1, CHEN Qianru2,3, GUO Haoran1, CHENG Cheng1, BAI Bingzhe1
1 School of Mechanical, Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044;
2 College of Petroleum Engineering,Xi’an Shiyou University,Xi’an 710065;
3 Well Cementing Compangy,CNPC Chuanqing Drilling Engineering Company Limited,Xi’an 710018
下载:  全 文 ( PDF ) ( 2466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 贝/马复相钢具有较低的夹杂物敏感性,组织因素对其超高周疲劳性能具有显著影响。组织因素引起的“非夹杂起裂”成为贝/马复相钢重要的裂纹萌生方式,贝/马复相组织的类型、形态、均匀性、细化程度等都对钢的超高周疲劳性能具有显著影响。讨论了组织纯净化、组织细化和残余奥氏体对贝/马复相钢超高周疲劳性能及其裂纹萌生机制的影响,在合理控制夹杂物水平的基础上,调控复相组织,可以在1 600 MPa级别的贝/马复相钢中,获得超高周(循环周次大于108)疲劳强度达到900 MPa的优异性能。同时对非夹杂起裂机理进行了初步探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高古辉
陈倩如
郭浩冉
程骋
白秉哲
关键词:  贝氏体  超高周疲劳  非夹杂起裂  复相组织  高强度合金钢  组织纯净化  组织细化  残留奥氏体    
Abstract: In order to improve the fatigue properties of the steel component used in high speed railway and oil exploration, the bainite/martensite (B/M) multiphase high strength steels with excellent fatigue properties have been developed. Many results showed that the very high cycle fatigue (VHCF) property of B/M steels is less sensitive to the inclusion than that of conventional tempered martensite steels. Hence, both non-inclusion and inclusion-induced crack initiations occurred in the B/M steels under VHCF test. The microstructure morphologies, i.e., phase types, microstructure homogeneity and refinement degree,could influence the non-inclusion induced crack initiation. The VHCF crack initiation sites are determined by the competition between the inclusion level and the microstructure morphologies of the B/M steels. Enhanced VHCF properties of B/M steels have been achieved through coordinated adjustment of physical and/or chemical metallurgy treatment (e.g., microstructure optimization and inclusion size reduction). The mechanism of non-inclusion induced crack initiations is also discussed.
Key words:  bainite    very high cycle fatigue    non-inclusion induced crack initiation    multiphase microstructure    high-strength alloy steel    purification    grain refinement    retained austenite
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG142.24  
基金资助: *国家自然科学基金面上项目(51271013);中央高校基本科研业务费(2014JBM101)
作者简介:  高古辉:男,1987年生,博士,副研究员,主要从事贝氏体相变与贝氏体钢应用 Tel:010-51685495 E-mail:gaogh@bjtu.edu.cn
引用本文:    
高古辉, 陈倩如, 郭浩冉, 程骋, 白秉哲. 贝/马复相钢超高周疲劳行为及非夹杂起裂*[J]. 《材料导报》期刊社, 2017, 31(20): 48-52.
GAO Guhui, CHEN Qianru, GUO Haoran, CHENG Cheng, BAI Bingzhe. Very High Cycle Fatigue Behaviors of Bainite/Martensite Multi-phase Steel and Mechanism of Non-inclusion Induced Crack Initiation. Materials Reports, 2017, 31(20): 48-52.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.011  或          https://www.mater-rep.com/CN/Y2017/V31/I20/48
1 李鹤林,李平全,冯耀荣. 石油钻柱失效分析及预防 [M]. 北京:石油工业出版社,1999.
2 Macdonald K, Bjune J V. Failure analysis of drill strings[J]. Eng Failure Analysis, 2007,14(8):1641.
3 Li Helin, Ji Lingkang, Xie Lihua. Current situation analysis of oil steel pipe in China [J], J Hebei Univer Sci Technol, 2006,27(1):1(in Chinese).
李鹤林,吉玲康,谢丽华. 中国石油钢管的发展现状分析 [J]. 河北科技大学学报,2006,27(1):1.
4 Zhou Chengen, Xie Jijia, Hong Youshi. Retrospect and prospect of very high cycle fatigue[J]. J Mech Strength, 2004,26(5):526(in Chinese).
周承恩,谢季佳,洪友士. 超高周疲劳研究现状及展望 [J]. 机械强度,2004,26(5):526.
5 Wang Qingyuan, Liu Yongjie. Very high fatigue behaviors of the metal structural materials [J]. Chin J Solid Mech, 2010,31(5):496(in Chinese).
王清远,刘永杰. 结构金属材料超高周疲劳破坏行为 [J]. 固体力学学报,2010,31(5):496.
6 Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J Solid Mech Mater Eng, 2009,3(3):425.
7 Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high strength steel in a very high cycle fatigue regime [J]. Int J Fatigue, 2006,28:1521.
8 Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels [J]. Fatigue Fract Eng Mater Struct, 1999,22:581.
9 Yu Y, Gu J, Shou F, et al. Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual steels [J]. Int J Fatigue, 2011,33:500.
10Yu Y, Gu J, Xu L, et al. Very high cycle fatigue behaviors of Mn-Si-Cr series bainite/martensite dual phase steels [J]. Mater Des, 2010,31:3067.
11Zhao P, Gao G, Misra R, et al. Effect of microstructure on the very high cycle fatigue behavior of a bainite/martensite multiphase steel [J]. Mater Sci Eng A, 2015,630:1.
12Zhao P, Cheng C, Gao G et al. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels [J]. Mater Sci Eng A, 2016,650:438.
13Yang Z, Zhang J, Li S, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater Sci Eng A, 2006,427:167.
14Yu Yang. Study on very high cycle fatigue behaviors and mechanism of Mn-Si-Cr series bainite/martensite duplex-phase high strength steels [D]. Beijing:Tsinghua University, 2010(in Chinese).
于洋. Mn-Si-Cr系贝/马复相高强钢超高周疲劳行为及机理研究 [D]. 北京:清华大学,2010.
15Shiozawa K, Lu L, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel [J]. Fatigue Fract Eng Mater Struct, 2001,24:781.
16Hong Y, Lei Z, Sun C, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int J Fatigue, 2014,58:144.
17Chai G. Fatigue behaviour of duplex stainless steels in the very high cycle regime [J]. Int J Fatigue, 2006,28:1611.
18Gao G, Zhang B, Cheng C, et al. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process [J]. Int J Fatigue, 2016,92:203.
[1] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[2] 杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报, 2024, 38(9): 22100050-8.
[3] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[4] 樊立峰, 杨玉龙, 岳尔斌, 郭洪飞, 黄娇, 高军. 回火温度对2%Mn高强钢组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080090-7.
[5] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[6] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[7] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[8] 桂晓露, 王琨, 苏浩, 高古辉, 白秉哲. 重载铁路用贝氏体钢轨显微组织定量表征[J]. 材料导报, 2020, 34(22): 22136-22141.
[9] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[10] 王占花, 惠卫军, 陈祯, 张永健, 赵晓丽. 钒及奥氏体化温度对Mn-Cr系贝氏体型非调质钢过冷奥氏体连续冷却转变行为的影响[J]. 材料导报, 2020, 34(18): 18145-18151.
[11] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[12] 赵清晨, 王金龙, 张元良, 沈毅鸿, 刘淑杰. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命[J]. 材料导报, 2018, 32(16): 2837-2841.
[13] 蒋波, 戴光咏, 闫永明, 刘广磊, 王芝林, 王国存, 刘雅政. 具有合理硬度梯度和组织分布的渗碳钢23CrNi3Mo的热处理冷却行为*[J]. 《材料导报》期刊社, 2017, 31(8): 70-75.
[14] 李晓成, 郑亚风, 吴晓春. 晶粒尺寸对贝氏体钢SDP1的连续冷却转变规律的影响[J]. 《材料导报》期刊社, 2017, 31(6): 86-92.
[15] 李辉, 米振莉, 张华, 赵奇. 配分时间对Q&P钢力学性能及显微组织的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 83-86.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed