Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25040052-7    https://doi.org/10.11896/cldb.25040052
  空间润滑材料 |
金属掺杂MoS2基复合薄膜的微观结构与真空摩擦学性能研究
郑玉刚1, 苟世宁1, 冯兴国1, 汪科良1, 赵蒙1, 张凯锋1, 周晖1,*, 李林2,*
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 北京空间飞行器总体设计部,北京 100094
Microstructure and Vacuum Tribological Properties of Metal Doped MoS2 Composite Films
ZHENG Yugang1, GOU Shining1, FENG Xingguo1, WANG Keliang1, ZHAO Meng1, ZHANG Kaifeng1, ZHOU Hui1,*, LI Lin2,*
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
下载:  全 文 ( PDF ) ( 26288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用非平衡磁控溅射技术在Si片和9Cr18钢表面分别沉积了纯MoS2、MoS2-Ag、MoS2-Ti和MoS2-(Ti+Ag)四种不同类型的薄膜,并对这四种薄膜进行了对比分析研究。结果表明,四种薄膜的表面形貌为颗粒状,断面形貌为柱状晶,掺杂Ti和Ag能显著提升薄膜的致密性,掺杂Ti还产生衍射峰宽化和晶粒细化。力学性能测试结果表明,掺杂Ti和(Ti+Ag)共掺杂能大幅度提升薄膜的硬度和附着力,硬度相较纯MoS2薄膜分别提升了5.9倍和5.1倍,附着力分别增大了3.5倍和3.2倍。真空摩擦学性能实验分析发现,与磨损率为1.63×10-15m3/(N·m)的纯MoS2薄膜相比,Ti掺杂及(Ti+Ag)共掺杂均能显著提高耐磨性能,MoS2-(Ti+Ag)磨损率仅为0.9×10-17m3/(N·m),降低了2个数量级,表现出优异的摩擦学性能。本研究为改善金属掺杂MoS2基复合薄膜的真空摩擦学性能提供了理论依据和实验数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑玉刚
苟世宁
冯兴国
汪科良
赵蒙
张凯锋
周晖
李林
关键词:  二硫化钼薄膜  金属掺杂  硬度  真空摩擦学性能    
Abstract: MoS2, MoS2-Ti, MoS2-Ag and MoS2-(Ti+Ag) films were deposited on Si wafers and 9Cr18 steel using unbalanced magnetron sputtering technology. A comparative analysis of these four films was subsequently conducted. The films exhibit granular surface morphology and columnar structure in cross-section. Doping with Ti and Ag significantly enhances films compactness, while Ti doping results in peak broadening, indicating refined grain size. The mechanical property tests demonstrate that both Ti doping and (Ti+Ag) co-doping significantly improve film hardness and adhesion. Compared to pure MoS2 films, hardness increases by factors of 5.9 and 5.1, respectively, and adhesion increases by 3.5 times and 3.2 times. Vacuum tribological tests reveal that Ti-doped and (Ti+Ag)-co-doped films significantly outperform pure MoS2 films (wear rate:1.63×10-15 m3/(N·m)) in wear resistance. The MoS2-(Ti+Ag) film exhibits a wear rate of 0.9×10-17m3/(N·m), representing a two-order-of-magnitude reduction and demonstrating superior tribological performance. This study provides a theoretical basis and experimental data for improving the vacuum tribological properties of metal doped MoS2 composite films.
Key words:  MoS2 film    metal doping    hardness    vacuum tribological property
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TH117  
通讯作者:  周晖,博士,兰州空间技术物理研究所研究员,博士研究生导师。目前主要从事表面工程技术与空间摩擦学等方面的研究。zhouhui510@sina.com
李林,北京空间飞行器总体设计部高级工程师,目前从事空间机构设计、超大型空间结构在轨构建等方面的研究。lilin03071728@163.com   
作者简介:  郑玉刚,硕士,兰州空间技术物理研究所工程师。目前主要从事空间润滑材料与空间摩擦学等方面的研究。
引用本文:    
郑玉刚, 苟世宁, 冯兴国, 汪科良, 赵蒙, 张凯锋, 周晖, 李林. 金属掺杂MoS2基复合薄膜的微观结构与真空摩擦学性能研究[J]. 材料导报, 2025, 39(15): 25040052-7.
ZHENG Yugang, GOU Shining, FENG Xingguo, WANG Keliang, ZHAO Meng, ZHANG Kaifeng, ZHOU Hui, LI Lin. Microstructure and Vacuum Tribological Properties of Metal Doped MoS2 Composite Films. Materials Reports, 2025, 39(15): 25040052-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25040052  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25040052
1 Feng X G, Zheng Y G, Wang K L, et al. Vacuum and Cryogenics, 2024, 30(1), 31(in Chinese).
冯兴国, 郑玉刚, 汪科良, 等. 真空与低温, 2024, 30(1), 31.
2 Zeng C, Pu J, Wang H, et al. Ceramics International, 2020, 46(9), 13774.
3 Gao X M, Hu M, Sun J Y, et al. Vacuum, 2017, 144, 72.
4 Hilton M R, Fleischauer P D. Surface and Coatings Technology, 1992, 54, 435.
5 Voumard P, Savan A, Pflüger E. Lubrication Science, 2001, 13(2), 135.
6 Chai L Q, Zhang X Q, Xu J, et al. Tribology, 2016, 36(1), 1(in Chinese).
柴利强, 张晓琴, 许佼, 等. 摩擦学学报, 2016, 36(1), 1.
7 Guan X Y, Wang L P, Zhang G A, et al. Tribology, 2015, 35(3), 259(in Chinese).
关晓艳, 王立平, 张广安, 等. 摩擦学学报, 2015, 35(3), 259.
8 Renevier N M, Fox V C, Teer D G, et al. Surface and Coatings Technology, 2000, 127(1), 24.
9 Bülbül F, Efeoğluİ, Arslan E. Applied Surface Science, 2007, 253(9), 4415.
10 Zhou H, Zheng J, Wen Q P, et al. Physics Procedia, 2011, 18, 234.
11 Wang X, Xing Y M, Ma S L, et al. Surface and Coatings Technology, 2007, 201(9-11), 5290.
12 Qin X P, Ke P L, Wang A Y, et al. Surface and Coatings Technology, 2013, 228, 275.
13 Bertóti I, Mohai M, Renevier N M, et al. Surface and Coatings Technology, 2000, 125(1-3), 173.
14 Stoyanov P, Strauss H W, Chromik R R. Wear, 2012, 274, 149.
15 Banerji A, Bhowmick S, Alpas A T. Surface and Coatings Technology, 2017, 314, 2.
16 Su Y, Zheng S X. Lubrication Engineering, 2023, 48(2), 154(in Chinese).
苏煜, 郑韶先. 润滑与密封, 2023, 48(2), 154.
17 Wang X P, Xiao J K, Zhang L, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(10), 2811(in Chinese).
王新平, 肖金坤, 张雷, 等. 中国有色金属学报, 2012, 22(10), 2811.
18 Li S, Feng Y, Yang X T, et al. Rare Metal Materials and Engineering, 2009, 38(11), 1881.
19 Shen Z H, Hu D F. Materials Protection, 2021, 54(4), 123(in Chinese).
申祖辉, 胡东方. 材料保护, 2021, 54(4), 123.
20 Du J T, Tong R T, Wang Y F, et al. Tribology, 2022, 42(4), 669(in Chinese).
杜晶涛, 佟瑞庭, 王云峰, 等. 摩擦学学报, 2022, 42(4), 669.
21 Kao W H. Wear, 2005, 258(5-6), 812.
22 Su Y L, Kao W H. Tribology International, 2003, 36(1), 11.
23 Wei C B, Ou W M, Hou H J, et al. Surface Technology, 2017, 46(10), 135(in Chinese).
韦春贝, 欧文敏, 侯惠君, 等. 表面技术, 2017, 46(10), 135.
24 Ou W M, Wei C B, Dai M J, et al. Surface Technology, 2017, 46(1), 93(in Chinese).
欧文敏, 韦春贝, 代明江, 等. 表面技术, 2017, 46(1), 93.
25 Zhao J L, Deng J X, Song W L. Tribology, 2009, 29(3), 238(in Chinese).
赵金龙, 邓建新, 宋文龙. 摩擦学学报, 2009, 29(3), 238.
26 Arslan E, Baran Ö, Efeoglu I, et al. Surface and Coatings Technology, 2008, 202(11), 2344.
27 Li H, Zhang G A, Wang L P. Wear, 2016, 350, 1.
28 Wahl K J, Dunn D N, Singer I L. Wear, 1999, 230(2), 175.
29 Stoyanov P, Gupta S, Chromik R R, et al. Tribology International, 2012, 52, 144.
30 Geng Z R, Li X, Zhang G A, et al. Tribology, 2016, 36(4), 481(in Chinese).
耿中荣, 李霞, 张广安, 等. 摩擦学学报, 2016, 36(4), 481.
31 Pimentel J V, Polcar T, Cavaleiro A. Surface and Coatings Technology, 2011, 205(10), 3274.
32 Gu L, Ke P L, Zou Y S, et al. Applied Surface Science, 2015, 331, 66.
33 Teer D G. Wear, 2001, 251(1-12), 1068.
34 Renevier N M, Hamphire J, Fox V C, et al. Surface and Coatings Technology, 2001, 142, 67.
35 Zabinski J S, Donley M S, Walck S D, et al. Tribology Transactions, 1995, 38(4), 894.
36 Xu S S, Gao X M, Hu M, et al. Surface and Coatings Technology, 2014, 238, 197.
[1] 胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
[2] 赵锡龙, 曹泽宇, 赵铭, 王堃. 铜合金板材低电压螺柱喷涂304奥氏体不锈钢喷涂工艺及涂层性能研究[J]. 材料导报, 2025, 39(14): 24070070-7.
[3] 张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
[4] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[5] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[6] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[7] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[8] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[9] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[10] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[11] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[12] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[13] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[14] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[15] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed