Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030237-8    https://doi.org/10.11896/cldb.25030237
  空间润滑材料 |
空间流体润滑材料研究进展
霍丽霞1, 张静静2, 郭芳君1, 刘师洋3, 贺颖1, 曹珍1, 张凯锋1,*, 高鸿2,*
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 中国空间技术研究院,北京 100094
3 中国国际工程咨询有限公司,北京 100048
Research Progress on Liquid Lubricant for Space Mechanisms
HUO Lixia1, ZHANG Jingjing2, GUO Fangjun1, LIU Shiyang3, HE Ying1, CAO Zhen1, ZHANG Kaifeng1,*, GAO Hong2,*
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 China Academy of Space Technology, Beijing 100094, China
3 CIECC High-Tech Consulting Center Corporation, Beijing 100048, China
下载:  全 文 ( PDF ) ( 2646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间有效载荷的核心传动机构通常没有备份,一旦失效将造成有效载荷功能的丧失。这种单点失效模式使得流体润滑材料成为保证空间活动机构可靠运转的重要材料,因此提升现有空间流体润滑材料的综合性能与开发新的空间高效流体润滑材料,是推进新一代空间载荷活动机构研制的重要途径。本文介绍了目前空间领域广泛应用的流体润滑材料的种类及结构特性,综述了各类型空间流体润滑材料性能的改进提升方法与应用现状等,对现有空间流体润滑材料面临的难点及未来发展方向和趋势进行了展望,以期为高性能空间活动机构的研发与润滑设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍丽霞
张静静
郭芳君
刘师洋
贺颖
曹珍
张凯锋
高鸿
关键词:  流体润滑材料  全氟聚醚  多烷基取代环戊烷  硅烃  离子液体  凝胶润滑剂  空间应用    
Abstract: The transmission mechanism of the spacecraft payload often lacks backup. However, if the mechanism loses efficacy in virtue of the lubricants deteriorating, the payload might be deprived of the function. It makes liquid lubricating materials becoming an important material to ensuring the reliability of the transmission mechanisms in view of the single point failure mode on the spacecraft payload. Therefore, to meet the needs of developing a new generation of spacecraft activity mechanisms, the comprehensive performance of the liquid lubrication materials should be improved, perhaps new efficient liquid lubrication materials should also be developed. Based on the above, this paper provides a comprehensive overview of the liquid lubricating materials widely used in space. The methods for improving the performance of various types of liquid lubricants are summarized, and the application status of the space liquid lubricant are also analysed. So that the development and the challenges of space liquid lubricants are emphasised for the implementation of high-performance spacecraft payload transmission mechanisms in future.
Key words:  liquid lubricant    perfluoropolyether    multialkylated cyclopentanes    silahydrocarbons    ionic liquids    gel lubricant    used for space mechanisms
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TH145  
通讯作者:  张凯锋, 理学博士, 研究员, 从事空间摩擦学、空间柔性航天器技术及基于航天器武器装备应用的表面工艺技术研究。Zhangkf510@sina.com
高鸿,博士,研究员。长期从事空间用高分子材料研究。gaohong_cast@sina.com   
作者简介:  霍丽霞, 高级工程师, 博士, 目前从事表面工程技术研究。
引用本文:    
霍丽霞, 张静静, 郭芳君, 刘师洋, 贺颖, 曹珍, 张凯锋, 高鸿. 空间流体润滑材料研究进展[J]. 材料导报, 2025, 39(15): 25030237-8.
HUO Lixia, ZHANG Jingjing, GUO Fangjun, LIU Shiyang, HE Ying, CAO Zhen, ZHANG Kaifeng, GAO Hong. Research Progress on Liquid Lubricant for Space Mechanisms. Materials Reports, 2025, 39(15): 25030237-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030237  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030237
1 Prozhega M V, Albagachiev A Y, Smirnov N I et al. Journal of Friction and Wear, 2018, 39(4), 335.
2 Krishnan S, Lee S H, Hsu H Y, et al. Advances in Spacecraft Technologies, 2011, 4, 75.
3 Fusaro R. NASA Technical Memorandum 210806, 2001.
4 Chen L W, Li Z C, Lee C H, et al. Aerospace Science and Technology, 2016, 53, 194.
5 Prozhega M V, Reschikov E O, Smirnov N N. Journal of Friction and Wear, 2021, 42, 431.
6 Liu B T, Zhang J J, Gao H, et al. Materials Reports, 2017, 31(S2), 290(in Chinese).
刘泊天, 张静静, 高鸿, 等. 材料导报, 2017, 31(S2), 290.
7 Zhang J, Bao L, Yu Q, et al. Tribology International, 2021, 155, 106777.
8 Zhang J, Bai Y, Yu Q, et al. Advanced Materials Interfaces, 2018, 6, 1801391
9 Jones W R, Jansen M J, Gschwender C E, et al. Journal of Synthetic Lubricant, 2004, 20(4), 303.
10 Wang Z A, Chen G L. Lubrication Engineering, 2008, 33(1), 137(in Chinese).
王泽爱, 陈国需. 润滑与密封, 2008, 33(1), 13.
11 Pouzar J, Kostal D, Sperka P, et al. Vacuum, 2024, 219, 112758.
12 Dai Q W, Huang W, Wang X L. Surface Technology, 2014, 43, 125(in Chinese).
戴庆文, 黄巍, 王晓雷. 表面技术, 2014, 43, 125.
13 Frantz P, Helt J, Didziulis S. In:Proceedings of the 45th Aerospace Mechanisms Symposium. Meylan, France, 2020, pp. 287.
14 Koch B, Jantzen E. Journal of Synthetic Lubrication, 1995, 12, 191.
15 Zhao W J, Zeng Z X, Wang L P, et al. Lubrication Engineering, 2012, 37(2), 117(in Chinese)
赵文杰, 曾志翔, 王立平, 等. 润滑与密封, 2012, 37(2), 117.
16 Jones W R, Shogrin B A, Jansen M J. Journal of Synthetic Lubricants, 2002, 17(2), 109.
17 Zhang S W, Hu L T, Qiao D, et al. Tribology International, 2013, 66, 289.
18 Kasai P H, Wheeler P. Applied Surface Science, 1991, 52, 91.
19 Paciorek K J L, Kratzer R H. Journal of Fluorine Chemistry, 1994, 67(2), 169.
20 Kasai P H. Macromolecules, 1992, 25, 6791.
21 Kasai P H, Tang W T, Wheeler P. Applied Surface Science, 1991, 51(3-4), 201.
22 Hellman P T, Gschwender L, Snyder C E. Journal of Synthetic Lubricant, 2006, 23(4), 197.
23 Patrick T H, Lois G, Carl E S. Journal of Synthetic Lubricant, 2006, 23, 197.
24 Kaldonski T, Wojdyna P. Journal of Kones Powertrain and Transport, 2011, 18, 163.
25 Fusaro R L. No. 106392. NASA Lewis Research Center: Cleveland, OH, USA, 1994.
26 Buttery M, Lewis S, Kent A, et al. Lubricants, 2020, 8(3), 32.
27 Ge Y, Lin N, Du C, et al. Cellulose, 2023, 30, 3757.
28 Huang G W, Yu Q L, Ma Z F, et la. Tribology Letters, 2017, 65, 28.
29 Henry T, Holynska M. IOP Conference Series: Materials Science and Engineering, 2023, 1287, 012011.
30 Fabian S, Malgorzata H, Théo H, et al. Lubricants, 2024, 12, 72.
31 Archim W, Andreas H, Sandra S, et al. CEAS Space Journal, 2021, 13, 377.
32 Bialke B. In:Proceedings of the Sixth European Space Mechanisms and Tribology Symposium. Zürich, Switzerland, 1995, ESA SP-374, pp. 285.
33 Carre D J, Kalogeras C G, Didziulis S V, et al. In:Proceedings of the Sixth European Space Mechanisms and Tribology Symposium. Zürich, Switzerland, 1995, ESA SP-374, pp. 177.
34 Marchetti M, Jones Jr W R, Street K W, et al. Tribology Letters, 2002, 12, 209.
35 Andrew S G, Florian N, Dwight C, et la. In:The Proceedings of the 43rd Aerospace Mechanisms Symposium. California, US, 2016, pp. 329.
36 Jeffrey M, Michael R, Charles H. In:The Proceedings of the 43rd Aerospace Mechanisms Symposium. California, US, 2016, pp. 121.
37 Steve K, Scott W. In:Proceedings of the 3th Aerospace Mechanisms Symposium. California, US, 2006, pp. 209.
38 He Y F, Liu B M, Chen X W, et al. China Petroleum Processing Petrochemical Technology, 2020, 51(9), 1(in Chinese).
何懿峰, 刘邦明, 陈晓伟, 等. 石油炼制与化工, 2020, 51(9), 1.
39 Xia Y Q, Xi X, Deng Y. Acta Petrolei Sinica, 2018, 34(2), 326(in Chinese).
夏延秋, 席翔, 邓颖. 石油学报, 2018, 34(2), 326.
40 Xia Y Q, Mu W X, Xi X, et al. Tribology, 2018, 38(1), 93(in Chinese).
夏延秋, 穆文雄, 席翔, 等. 摩擦学学报, 2018, 38(1), 93.
41 Masuko M, Iijima S, Terawaki T, et al. Tribology Letters, 2013, 51, 115.
42 Nian J Y, Si Y F, Guo Z G, et al. Friction, 2016, 4(3), 257.
43 Peterangelo S C, Gschwender L, Snyer Jr C E, et al. Journal of Synthetic lubricants, 2008, 25, 31.
44 Ma J Q, Bai M W. Tribology Letter, 2009, 36, 191.
45 Wang X W, Zhang C Y, Zhao C, et al. Friction, 2024, 12(5), 884.
46 Archim W, Martin Z, Andreas H. et al. Tribology Letters, 2021, 69, 3.
47 Jones W R, Jansen M J, Gschwender C E, et al. Journal of Synthetic Lubricant, 2004, 20(4), 303.
48 Wang H Z, Zhang S W, Qiao D, et al. Journal of Nanomaterials, 2014, 2014(1), 852386.
49 He J J, Liang Y X, Liu H, et al. China Petroleum Processing Petrochemical Technology, 2023, 54(6), 76(in Chinese).
贺景坚, 梁宇翔, 刘辉, 等. 石油炼制与化工, 2023, 54(6), 76.
50 Zhang C, Hu M, Yan Z, et al. Tribology, 2018, 38(5), 601(in Chinese).
张灿, 胡明, 剡珍, 等. 摩擦学学报, 2018, 38(5), 601.
51 Dean G B, Mark A E, Stuart H L, et al. Journal of Synthetic Lubricant, 2006, 23, 81.
52 Calvar N, Gómez E, Macedo E A, et al. Thermochimica Acta, 2013, 565, 178.
53 Song J. ACS Omega, 2021, 6, 29345.
54 Zhu L Y, Tian Q, Peng Y Z, et al. Synthetic Lubricants, 2024, 51(4), 55(in Chinese).
朱立业, 田强, 彭瑜洲, 等. 合成润滑材料, 2024, 51(4), 55.
55 Kaminmura H, Kubo T, Minamik I, et al. Tribology International, 2007, 40(4), 620.
56 Liu X Q, Zhou F, Liang Y M. Tribology, 2006, 26(1), 36(in Chinese).
刘旭庆, 周峰, 梁永民. 摩擦学学报, 2006, 26(1), 36.
57 Wang H Z, Ye C F, Liu W M. Tribology, 2003, 23(1), 38(in Chinese).
王海忠, 叶承峰, 刘维民. 摩擦学学报, 2003, 23(1), 38.
58 Okaniwa T, Hayama M. In:Proceedings of the 15th European Space Mechanisms and Tribology Symposium. Noordwijk, The Netherlands, 2013, pp. 25.
59 Fan X, Wang L. ACS Applied Materals Interfaces, 2014, 6, 14660.
60 Dörr N, Merstallinger A, Holzbauer R. et al. Tribology Letter, 2019, 67, 73.
61 Morales W, Street K W, Richard R M, et al. Tribology Transactions, 2012, 55 (6), 815.
62 Song Z H, Liang Y M, Fan M J, et al. Friction, 2013, 1, 222.
63 Wen X Q, Yuwen F Y, Ding Z Q, et al. Tribology International, 2019, 135, 269.
64 Yang G R, Yang X H, Lyu J J, et al. Tribology, 2014, 24(3), 34(in Chinese).
杨桂荣, 杨雪衡, 吕晋军, 等. 摩擦学学报, 2014, 24(3), 34.
65 Yuwen F Y, Qiao Y N, Ding Z Q, et al. Thin Solid Films, 2021, 733, 138818.
66 Yu Q, Fan M, Li D, et al. ACS Applied Materials Interfaces, 2014, 6, 15783.
67 Zhang J Y, Jiang D, Wang D S, et al. ACS Applied Materials & Interfaces, 2021, 13, 58036.
68 Zhang J Y, Bo S S, Wang R, et al. ACS Appiled Materials & Interfaces, 2022, 14, 45934.
[1] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[2] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[3] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[4] 刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
[5] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[6] 石佳建, 李宝河, 息剑峰, 刘丹, 刘帅, 王桂玲. 离子液体调控材料物性的研究进展[J]. 材料导报, 2023, 37(13): 21050195-8.
[7] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[8] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[9] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[10] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[11] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[12] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[13] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[14] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[15] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[1] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[2] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[5] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[8] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[9] GAO Xudong, SHAO Yongbo, XIE Liyuan, YANG Dongping. Prediction of Fatigue Crack Propagation of X56 Steel Submarine Pipelines in Corrosive Environment[J]. Materials Reports, 2020, 34(2): 2123 -2130 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed