Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050232-6    https://doi.org/10.11896/cldb.24050232
  金属与金属基复合材料 |
室温C-ECAP纯铝组织演变及强韧化机理研究
郭廷彪1,2,*, 侯建德2, 冯瑞2, 姚子鹏2, 郑双双2, 张国庆1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Microstructure Evolution and Strengthening and Toughening Mechanism During Room-temperature C-ECAP of Pure Aluminum
GUO Tingbiao1,2,*, HOU Jiande2, FENG Rui2, YAO Zipeng2, ZHENG Shuangshuang2, ZHANG Guoqing1, 2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 57014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统ECAP在材料连续应用中受到极大限制,无法制备较长的棒材。为此,本工作采用连续ECAP(C-ECAP)对纯铝进行4道次挤压,研究了不同道次挤压对纯铝微观形貌、织构演变、强度和硬度等方面的影响。结果表明,初始晶粒尺寸由47.9 μm细化到1.1 μm,组织分布更加均匀;大角度晶界比例由5.9%提高到12.6%,变形晶粒逐渐转变为亚晶和再结晶晶粒;动态再结晶降低了位错密度,初始组织由粗大等轴晶变成细小等轴晶。1、4道次变形后,纯铝由{112}〈111〉型copper织构和{110}〈112〉型brass织构向{001}〈100〉型cube织构转变;强度和硬度显著提高,4道次变形后屈服强度、抗拉强度、硬度分别达95.6 MPa、162.2 MPa、HV53.3,且综合力学性能最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭廷彪
侯建德
冯瑞
姚子鹏
郑双双
张国庆
关键词:  纯铝  连续挤压  织构演变  动态再结晶  力学性能    
Abstract: Conventional ECAP is greatly limited in the continuous application of materials, so it is impossible to prepare longer bars. In this work, conti-nuous ECAP (C-ECAP) was used to extrude pure aluminum for four passes, and the effects of different passes on the microstructure, texture evolution, strength and hardness of pure aluminum were studied. The results showed that the initial grain size got refined from 47.9 μm to 1.1 μm, the microstructure distribution became more uniform, and the proportion of large-angle grain boundaries was increased from 5.9% to 12.6%. The deformed grains gradually transformed into sub-grains and recrystallized grains, and dynamic recrystallization reduced the dislocation density. The initial structure changed from coarse equiaxed grains to fine equiaxed grains. After 1-pass and 4-pass extrusion, the texture changed from {112}〈111〉 copper texture and {110}〈112〉 brass texture to {001}〈100〉 cube texture. The strength and hardness increased significantly, as the yield strength, tensile strength and hardness reached 95.6 MPa, 162.2 MPa and HV53.3 respectively after 4 passes, and the comprehensive mechanical properties became better.
Key words:  pure aluminum    continuous extrusion    texture evolution    dynamic recrystallization    mechanical property
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51861022);甘肃省重点科技研发项目(22YF7GA158;22ZD6GA008;20YF8GA056)
通讯作者:  *郭廷彪,兰州理工大学材料科学与工程学院教授、硕士研究生导师,目前主要从事凝固理论与技术、金属强韧化、材料组织与性能调控等方面的研究工作。guotb@lut.cn   
引用本文:    
郭廷彪, 侯建德, 冯瑞, 姚子鹏, 郑双双, 张国庆. 室温C-ECAP纯铝组织演变及强韧化机理研究[J]. 材料导报, 2025, 39(12): 24050232-6.
GUO Tingbiao, HOU Jiande, FENG Rui, YAO Zipeng, ZHENG Shuangshuang, ZHANG Guoqing. Microstructure Evolution and Strengthening and Toughening Mechanism During Room-temperature C-ECAP of Pure Aluminum. Materials Reports, 2025, 39(12): 24050232-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050232  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050232
1 Wang H. Microstructure and mechanical properties of pure Al and Al-Mg alloys with high Mg content processed by high pressure torsion. Master’s Thesis, Jiangsu University, China, 2016 (in Chinese).
王辉. 高压扭转纯铝和高镁Al-Mg铝合金的微观结构与力学性能. 硕士学位论文, 江苏大学, 2016.
2 Li J, He T, Jia D S, et al. Forging & Stamping Technology, 2023, 48(11), 60 (in Chinese).
李健, 何涛, 贾东昇, 等. 锻压技术, 2023, 48(11), 60.
3 Bian Y N, Lu Y, Zhang J, et al. Acta Materialia, 2023, 253, 118964.
4 Li G S, Xu S K, Wan T J, et al. Materials Characterization, 2023, 205, 113248.
5 Mavlyutov A, Evstifeev A, Volosevich D, et al. Metals, 2023, 13(7), 1281.
6 Fu Y T, Sun J P, Yang Z Q, et al. Materials Characterization, 2020, 165, 110398.
7 Barr C J, Xia K. Journal of Materials Science & Technology, 2021, 82, 57.
8 Lowe T C, Davis S L, Campbell C R, et al. Materials Letters, 2021, 304, 130631.
9 Fu H W, Yin Y W, Yun X B, et al. Materials Design, 2022, 222, 111033.
10 Dvorak J, Sklenicka V, Horita Z. Materials Transactions, 2008, 49(1), 15.
11 Dong J F, Dong Q, Dai Y B, et al. Materials (Basel), 2017, 10(1), 87.
12 Tariku D, Kumar D S, Janaki P R, et al. International Journal of Mechanical and Materials Engineering, 2021, 16(1), 13.
13 Derakhshan F J, Parsa M, Jafarian H. Materials Science Engineering A, 2019, 747, 120.
14 Hou X Z, Ban C Y. Journal of Physics:Conference Series, 2021, 2021(1), 012077.
15 Rakhadilov К B, Kylyshkanov К M, Zhaparova S M. IOP Conference Series:Materials Science and Engineering, 2018, 447(1), 012084.
16 Xu S B, Wang H L, Liu P, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2022, 37(1), 130.
17 Lei W W, Zhang H, Liang W. Journal of Materials Research and Technology, 2022, 17, 2587.
18 Su L H, Deng G Y, Luzin V, et al. Materials Science and Engineering A, 2020, 780, 139190.
19 Li H X, Gao S, Tomota Y, et al. Acta Materialia, 2021, 206, 116621.
20 Wang G W, Song D, Zhou Z K, et al. Coatings, 2020, 10(3), 216.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed