Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24120162-10    https://doi.org/10.11896/cldb.24120162
  无机非金属及其复合材料 |
超高温陶瓷改性碳/碳复合材料力学性能研究综述
刘泰山1,2, 黄睿3, 王首豪1,2,*, 李瑞珍1,2, 郑金煌1,2
1 西安航天复合材料研究所,西安 710025
2 陕西省复合材料重点研究室,西安 710025
3 航天军代局驻西安某部,西安 710025
Review on Mechanical Properties of Ultra-high Temperature Ceramics Modified Carbon/Carbon Composites
LIU Taishan1,2, HUANG Rui3, WANG Shouhao1,2,*, LI Ruizhen1,2, ZHENG Jinhuang1,2
1 Xi’an Aerospace Composite Research Institute, Xi’an 710025, China
2 Shaanxi Key Laboratory of Composite Materials, Xi’an 710025, China
3 The Unit of Aerospace Military Representative Office in Xi’an, Xi’an 710025, China
下载:  全 文 ( PDF ) ( 57825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高温陶瓷改性碳/碳(C/C-UHTCs)复合材料在超高温下具有优异的力学性能,可为下一代高超音速飞行器的研发与发展提供高可靠的先进热结构材料。本文综述了化学气相渗透(CVI)法、前驱体浸渍裂解(PIP)法、反应熔体浸渗(RMI)法和浆料浸渍(SI)法等制备方法在提升C/C-UHTCs复合材料力学性能方面的最新进展,根据各类制备工艺的特性,深入分析影响其力学性能的因素。最后,展望了高力学性能C/C-UHTCs复合材料的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泰山
黄睿
王首豪
李瑞珍
郑金煌
关键词:  超高温陶瓷  碳/碳复合材料  力学性能    
Abstract: Ultra-high temperature ceramic modified carbon/carbon (C/C-UHTCs) composites exhibit excellent mechanical properties under ultra-high temperature conditions, providing highly reliable advanced thermal structural materials for the research and development of next-generation hypersonic vehicles. This review summarizes the latest advances in preparation methods such as chemical vapor infiltration (CVI), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), and slurry infiltration (SI) for enhancing the mechanical properties of C/C-UHTCs composites. Based on the characteristics of each preparation process, the factors influencing mechanical performance are analyzed in depth. Finally, future directions for the development of C/C-UHTCs composites with high mechanical properties are proposed.
Key words:  ultra-high temperature ceramics    carbon/carbon composites    mechanical property
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2022YFB3403500)
通讯作者:  *王首豪,大连理工大学材料学博士。现为西安航天复合材料研究所工程师、硕士研究生导师,主要从事碳基/陶瓷基复合材料的制备及性能优化研究。shwang1213@foxmail.com   
作者简介:  刘泰山,西安航天复合材料研究所硕士研究生,在王首豪博士的指导下进行研究。目前主要研究领域为高温材料及制造。
引用本文:    
刘泰山, 黄睿, 王首豪, 李瑞珍, 郑金煌. 超高温陶瓷改性碳/碳复合材料力学性能研究综述[J]. 材料导报, 2025, 39(12): 24120162-10.
LIU Taishan, HUANG Rui, WANG Shouhao, LI Ruizhen, ZHENG Jinhuang. Review on Mechanical Properties of Ultra-high Temperature Ceramics Modified Carbon/Carbon Composites. Materials Reports, 2025, 39(12): 24120162-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120162  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24120162
1 Song L, Xie W, Yang Q, et al. Journal of the European Ceramic Society, 2024, 44(11), 6321.
2 Wang H, Ding C S, Xie Z M, et al. Rare Metal Materials and Engineering, 2024, 53(5), 1321 (in Chinese).
王慧, 丁晨师, 谢卓明, 等. 稀有金属材料与工程, 2024, 53(5), 1321.
3 Zhang X T. Preparation and properties of novel HfCxN1-x (x=0. 3—0. 7) ultra-high temperature ceramics and their modification via second-phase composite and high-entropy alloying. Ph. D. Thesis, University of Science and Technology of China, China, 2023 (in Chinese).
张鑫涛. 新型HfCxN1-x(x=0.3~0.7)超高温陶瓷的制备与性能及其第二相复合与高熵化改性研究. 博士学位论文, 中国科学技术大学, 2023.
4 Tian T, Qing X, Sun W, et al. Journal of Central South University, 2024, 31(3), 679.
5 Galizia P, Sciti D, Binner J, et al. Journal of the European Ceramic Society, 2023, 43(11), 4588.
6 Yao J, Liang B, Hu C, et al. Journal of the European Ceramic Society, 2022, 42(14), 6412.
7 Luo H, Wang L Y, Luo R Y. Ceramics International, 2024, 50(3), 4533.
8 Ding J X, Chen Z K, Wang D, et al. Acta Materiae Compositae Sinica, 2024, 41(11), 1 (in Chinese).
丁家鑫, 陈招科, 王铎, 等. 复合材料学报, 2024, 41(11), 1.
9 Yao J, Pang S, Hu C, et al. Corrosion Science, 2020, 162, 108200.
10 Xiong X, Wang Y L, Li G D, et al. Acta Materiae Compositae Sinica, 2008(5), 91 (in Chinese).
熊翔, 王雅雷, 李国栋, 等. 复合材料学报, 2008(5), 91.
11 Shi X, Feng T, Hou W, et al. Composites Part B:Engineering, 2023, 266, 111012.
12 Singh S, Singh V, Kumari S, et al. Journal of the European Ceramic Society, 2021, 41(1), 130.
13 Peng Z, Sun W, Xiong X, et al. Journal of Materials Research and Technology, 2021, 14, 662.
14 Yan C, Liu R, Zhang C, et al. Ceramics International, 2016, 42(11), 12756.
15 Wang J, Cao L, Liu Y, et al. Journal of the European Ceramic Society, 2020, 40(8), 2828.
16 Feng T, Tong M, Yao S, et al. Journal of the European Ceramic Society, 2021, 41(1), 158.
17 Tian X, Yang L, Li B, et al. Journal of the European Ceramic Society, 2022, 42(15), 6774.
18 Cui G Y, Luo R Y, Wang L Y, et al. Journal of the European Ceramic Society, 2021, 41(10), 5026.
19 Qian J, Du B, He C, et al. Ceramics International, 2021, 47(23), 33632.
20 Qing L S, He J L, Lu L, et al. Materials Science and Engineering:A, 2016, 651, 583.
21 Chen Z K, Xiong X. Materials Chemistry and Physics, 2013, 141(2), 613.
22 Singh S, Singh V, Kumari S, et al. Ceramics International, 2019, 45(17), 21193.
23 Venkatachalam V, Esser B, Binner J. Composites Part A:Applied Science and Manufacturing, 2024, 185, 108358.
24 He Q, Lu J, Wang Y, et al. Ceramics International, 2016, 42(15), 17429.
25 Yan C, Liu R, Zhang C, et al. Journal of the European Ceramic Society, 2017, 37(6), 2343.
26 Hou W, Tong M, Wang L, et al. Ceramics International, 2024, 50(24B), 54605.
27 Liao M, De Guzman M R, Shen G, et al. Journal of the European Ceramic Society, 2024, 44(4), 1983.
28 Liu X Y, Wan F, Gao S T, et al. Journal of Materials Engineering, 2023, 51(8), 155 (in Chinese).
刘星煜, 万帆, 高世涛, 等. 材料工程, 2023, 51(8), 155.
29 Miao Q, Fu Y, Chen H, et al. Journal of the European Ceramic Society, 2023, 43(8), 3182.
30 Fu Y, Zhang Y, Li T, et al. Journal of the European Ceramic Society, 2024, 44(1), 107.
31 Fang J M, Mei M, Li J P, et al. Aerospace Materials & Technology, 2021, 41(8), 120 (in Chinese).
房金铭, 梅敏, 李军平, 等. 宇航材料工艺, 2021, 41(8), 120.
32 Li W, Lv J, Li J, et al. Journal of Materiomics, 2025, 11(2), 100879.
33 Yaghobizadeh O, Sedghi A, Baharvandi H R. Ceramics International, 2018, 44(15), 18039.
34 Feng T, Tong M, Hou W, et al. Ceramics International, 2021, 47(9), 12851.
35 Lu J, Hao K, Liu L, et al. Corrosion Science, 2016, 103, 1.
36 Peng Z, Miao C M, Sun W, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(10), 3349.
37 Tang Z, Yi M, Zhou Y, et al. Journal of the European Ceramic Society, 2021, 41(15), 7610.
38 Zhang M Y, Li K Z, Shi X H, et al. Journal of Alloys and Compounds, 2017, 721, 28.
39 Ma C, Guo L, Li H, et al. Materials & Design, 2016, 90, 373.
40 Huang C, Wang Z, Wang M. Journal of Industrial and Engineering Chemistry, 2016, 36, 80.
41 Zhu S B, Liu J S, Yan L S, et al. Aerospace Manufacturing Technology, 2021(1), 23 (in Chinese).
朱世步, 刘津生, 闫联生, 等. 航天制造技术, 2021(1), 23.
42 Sun J, Wang Y, Zhang Y, et al. Journal of the European Ceramic Society, 2022, 42(13), 5419.
43 Makurunje P, Middleburgh S C, Lee W E. Journal of the European Ceramic Society, 2023, 43(2), 183.
44 Zhang Y, Liu B, Hu D, et al. Journal of Alloys and Compounds, 2024, 1003, 175515.
45 Liu F Q, Tan J, Chen Y T, et al. Materials China, 2021, 40(5), 394 (in Chinese).
刘芙群, 谭杰, 陈耘田, 等. 中国材料进展, 2021, 40(5), 394.
46 Ni Y, Luo R, Luo H. Journal of Alloys and Compounds, 2019, 798, 784.
47 Kou S, Ma J, Ma Y, et al. Journal of the European Ceramic Society, 2023, 43(5), 1864.
48 Liu T, Fu Q, Zhang J. Ceramics International, 2021, 47(16), 22654.
49 Ma F, Luo H, Sun S Y, et al. Acta Materiae Compositae Sinica, 2024, 41(8), 4375 (in Chinese).
马飞, 罗浩, 孙守业, 等. 复合材料学报, 2024, 41(8), 4375.
50 Liu Z, Jia Y, Zhang S, et al. Ceramics International, 2024, 50(23), 49480.
51 Li H, Yang X, Chen F, et al. Ceramics International, 2023, 49(8), 12173.
52 Zeng Y, Xiong X, Wang D, et al. Carbon, 2015, 81, 597.
53 Li T, Zhang Y, Lv J. Journal of the European Ceramic Society, 2022, 42(10), 4162.
54 Wang R, Zhang J, Liu B, et al. Corrosion Science, 2024, 226, 111648.
55 Wen T, Wen Q, Lu L, et al. Journal of the European Ceramic Society, 2024, 44(10), 5623.
56 Zhang C, Hu P, Xun L, et al. Composites Part B:Engineering, 2024, 280, 111485.
57 Jia Y, Chen S A, Li Y, et al. Journal of Alloys and Compounds, 2019, 811(1), 151953.
58 Zhang J P, Su X X, Li X G, et al. New Carbon Materials, 2024, 39(4), 633.
59 Sha J J, Wang S H, Dai J X, et al. Ceramics International, 2020, 46(6), 8082.
60 Xu J, Sun W, Xiong X, et al. Ceramics International, 2024, 50(20), 38471.
61 Tang Z, Yi M, Xiang Q, et al. Journal of the European Ceramic Society, 2021, 41(13), 6160.
62 Zhang W, Zhang G, Bao J, et al. Journal of the European Ceramic Society, 2024, 44(13), 7523.
63 Ran L P, Rao F, Peng K, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(10), 2141.
64 Hu P, Zhang D, Dong S, et al. Journal of the European Ceramic Society, 2019, 39(4), 798.
65 Tang Z, Yi M, Zhou Z, et al. Journal of the European Ceramic Society, 2023, 43(14), 5840.
66 Zhang D, Feng J, Hu P, et al. Journal of the European Ceramic Society, 2020, 40(15), 5059.
67 Xu J, Sun W, Xiong X, et al. Journal of Alloys and Compounds, 2024, 976, 173137.
68 Baker B, Rubio V, Ramanujam P, et al. Journal of the European Ceramic Society, 2019, 39(14), 3927.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed