Research Progress on Activation and Electrochemistry Property of TiFe Based Hydrogen Storage Alloys
SUN Lili1,2, GUAN Ning1,2, WANG Yong1,2,*, LI Yongcun1,2
1 School of Mechanical Science and Engineering, Northest Petroleum University, Daqing 163318, Heilongjiang, China 2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
Abstract: The energy crisis is giving rise to the rapid development of new energy. Hydrogen is one of the widely distributed elements on earth, and is considered an ideal secondary energy source due to its high calorific value, abundant sources, and environmental characteristics. With the rapid growth of the new energy vehicle industry, fuel cell technology, especially nickel hydrogen (Ni-MH) fuel cells, has become a hot research. Among various hydrogen storage materials, TiFe based alloys are highly favored due to their low cost and high hydrogen storage capacity, and have become a focus of modern research as negative electrode materials for nickel hydrogen fuel cells. TiFe based alloys are a typical represen-tative of AB type hydrogen storage alloys, with potential high theoretical hydrogen storage capacity, and exhibit good reversible hydrogen absorption and desorption performance at room temperature. However, the application of TiFe based alloys faces some challenges. Firstly, the activation process of alloys requires extreme conditions, which increases the complexity of preparation. Secondly, alloys are susceptible to poisoning during hydrogen absorption and desorption, which may reduce their performance. Finally, fluctuations in the hydrogen absorption and desorption kinetics of alloys may also have adverse effects on their performance in electrochemical applications. These issues limit the further development of TiFe based alloys in commercial applications. Single element alloying or multi-element alloying can effectively change the composition layout and lattice structure of TiFe based alloys, optimize hydrogen storage performance, including improving activation kinetics, increasing hydrogen storage capacity, and optimizing hydrogen absorption and desorption kinetics. It can also significantly improve the electrochemical comprehensive performance of the alloy, including maximum discharge capacity, high rate discharge, and cycle stability. The casting method and ball milling method used in the preparation process can also increase the hydrogen storage activity of the alloy, significantly improve its hydrogen absorption and desorption kinetic performance, and thus improve the electrochemical charging and discharging capacitance. The surface modification method optimizes the microstructure and contact sites of the alloy, thereby improving hydrogen storage performance and cycle life, and making the electrochemical charging and discharging process of the alloy more stable.
孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
SUN Lili, GUAN Ning, WANG Yong, LI Yongcun. Research Progress on Activation and Electrochemistry Property of TiFe Based Hydrogen Storage Alloys. Materials Reports, 2025, 39(4): 24010105-9.
1 Mahesh A, Sandhu K S. Renewable and Sustainable Energy Reviews, 2015, 52, 1135. 2 Moriarty P, Honnery D. International Journal of Hydrogen Energy, 2007, 32(12), 1616. 3 Liu Y, Pan H, Gao M, et al. Journal of Materials Chemistry, 2011, 21(13), 4743. 4 Young K, Nei J. Materials, 2013, 6(10), 4574. 5 Rincón R A, Heydenrych G. Batteries & Supercaps, 2018, 1(1), 3. 6 Palacín M R, de Guibert A. Science, 2016, 351(6273), 1253292. 7 Dematteis E M, Berti N, Cuevas F, et al. Materials Advances, 2021, 2(8), 2524. 8 Züchner H, Bilitewski U, Kirch G. Journal of the Less Common Metals, 1984, 101, 441. 9 Abrashev B, Spassov T, Bliznakov S, et al. International Journal of Hydrogen Energy, 2010, 35(12), 6332. 10 Reilly J J, Wiswall R H. Inorganic Chemistry, 1974, 13(1), 218. 11 Van der Kraan A M, Buschow K H J. Physica B+C, 1986, 138(1-2), 55. 12 Ko W S, Park K B, Park H K. Journal of Materials Science & Technology, 2021, 92, 148. 13 Gao Jinliang, Yuan Zeming, Shang Hongwei, et al. Metallic Functional Materials, 2016, 23(1), 1 (in Chinese). 高金良, 袁泽明, 尚宏伟, 等. 金属功能材料, 2016, 23(1), 1. 14 Nagar R, Srivastava S, Hudson S L, et al. Solar Compass, 2023, 5, 100033. 15 Mohammadi A, Ikeda Y, Edalati P, et al. Acta Materialia, 2022, 236, 118117. 16 Floriano R, Zepon G, Edalati K, et al. International Journal of Hydrogen Energy, 2020, 45(58), 33759. 17 Liu H, Zhang J, Sun P, et al. Journal of Energy Storage, 2023, 68, 107772. 18 Dematteis E M, Dreistadt D M, Capurso G, et al. Journal of Alloys and Compounds, 2021, 874, 159925. 19 Jain P, Gosselin C, Huot J. International Journal of Hydrogen Energy, 2015, 40(47), 16921. 20 Gosselin C, Huot J. Materials, 2015, 8(11), 7864. 21 Lee S M, Perng T P. International Journal of Hydrogen Energy, 1994, 19(3), 259. 22 Kumar S, Tiwari G P, Sonak S, et al. Energy, 2014, 75, 520. 23 Patel A K, Duguay A, Tougas B, et al. International Journal of Hydrogen Energy, 2020, 45(1), 787. 24 Li C, Gao X, Liu B, et al. International Journal of Hydrogen Energy, 2023, 48(6), 2256. 25 Shen R, Pu C, Xu X, et al. Metals, 2020, 10(12), 1574. 26 Yuan Z, Zhen Q I, Zhai T, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 3087. 27 Sujan G K, Pan Z, Li H, et al. Critical Reviews in Solid State and Materials Sciences, 2020, 45(5), 410. 28 Zhang Y, Li C, Yuan Z, et al. Journal of Iron and Steel Research International, 2022, 29(4), 537. 29 Shang Y, Liu S, Liang Z, et al. Communications Materials, 2022, 3(1), 101. 30 Barale J, Dematteis E M, Capurso G, et al. International Journal of Hydrogen Energy, 2022, 47(69), 29866. 31 Emami H, Edalati K, Matsuda J, et al. Acta Materialia, 2015, 88, 190. 32 Yuan Z, Sui Y, Yuan Q, et al. International Journal of Hydrogen Energy, 2023, 48(30), 11340. 33 Huang Hongxia, Huang Kelong, Liu Suqin. New Chemical Materials, 2008, 36 (11), 27 (in Chinese). 黄红霞, 黄可龙, 刘素琴. 化工新型材料, 2008, 36(11), 27. 34 Zhu Haiyan, Chen Changpin, Wu Jun, et al. Rare Metals, 1991, 15(3), 189 (in Chinese). 朱海岩, 陈长聘, 吴军, 等. 稀有金属, 1991, 15(3), 189. 35 Davids M W, Lototskyy M, Nechaev A, et al. International Journal of Hydrogen Energy, 2011, 36(16), 9743 36 Heller E M B, Vredenberg A M, Boerma D O. Applied Surface Science, 2006, 253(2), 771. 37 Suda T, Ohkawa M, Sawada S, et al. Materials Transactions, 2002, 43(11), 2703. 38 Kwon H G, Park K B, Fadonougbo J O, et al. Materials Chemistry and Physics, 2023, 309, 128362. 39 Pande C S, Pick M A, Sabatini R L. Scripta Metallurgica, 1980, 14(8), 899. 40 Zhang T B, Yang X W, Li J S, et al. Journal of Power Sources, 2012, 202, 217. 41 Busch G, Schlapbach L, Stucki F, et al. International Journal of Hydrogen Energy, 1979, 4(1), 29. 42 Fischer P, Hälg W, Schlapbach L, et al. Materials Research Bulletin, 1978, 13(9), 931. 43 Matsumoto T, Amano M. Scripta Metallurgica, 1981, 15(8), 879. 44 Schober T. Journal of the Less Common Metals, 1983, 89(1), 63. 45 Park K B, Fadonougbo J O, Bae J S, et al. Metals, 2022, 12(12), 2093. 46 Peng C, Liu Q, Lv P, et al. International Journal of Hydrogen Energy, 2023, 48(97), 38374. 47 Ha T, Kim J H, Sun C, et al. Nano Energy, 2023, 112, 108483. 48 Ahn H J, Lee S M, Jai-Young L. Journal of the Less Common Metals, 1988, 142, 253. 49 Edalati K, Bachmaier A, Beloshenko V A, et al. Materials Research Letters, 2022, 10(4), 163. 50 Révész Á, Gajdics M. Energies, 2021, 14(4), 819. 51 Edalati K, Matsuda J, Iwaoka H, et al. International Journal of Hydrogen Energy, 2013, 38(11), 4622. 52 Miyamura H, Takada M, Kikuchi S. Journal of Alloys and Compounds, 2005, 404, 675. 53 Jiang W, Chen Y, Hu M, et al. Journal of Alloys and Compounds, 2021, 887, 161381. 54 Shang H, Zhang Y, Li Y, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1691. 55 Liu Fuchen, Han Zhonggang, Yuan Zeming, et al. Metallic Functional Materials, 2022, 29(5), 90 (in Chinese). 刘芙辰, 韩忠刚, 袁泽明, 等. 金属功能材料, 2022, 29(5), 90. 56 Xu Qingfei, Zhai Tingting, Han Zhonggang, et al. Metallic Functional Materials, 2021, 28(3), 42 (in Chinese). 徐庆飞, 翟亭亭, 韩忠刚, 等. 金属功能材料, 2021, 28(3), 42. 57 Jurczyk M. Journal of Materials Science, 2004, 39, 5271. 58 Hosni B, Khaldi C, ElKedim O, et al. Journal of Alloys and Compounds, 2019, 781, 1159. 59 Shang H, Zhang Y, Li Y, et al. Renewable Energy, 2019, 135, 1481. 60 Jankowska E, Makowiecka M, Jurczyk M. Journal of Alloys and Compounds, 2005, 404, 691. 61 Edalati K, Matsuda J, Yanagida A, et al. International Journal of Hydrogen Energy, 2014, 39(28), 15589. 62 Zhu Y, Yang Y, Wei L, et al. Journal of Alloys and Compounds, 2012, 520, 207. 63 Zeaiter A, Chapelle D, Cuevas F, et al. Powder Technology, 2018, 339, 903. 64 Jankowska E, Jurczyk M. Journal of Alloys and Compounds, 2004, 372(1-2), L9. 65 Shang H, Li Y, Zhang Y, et al. International Journal of Hydrogen Energy, 2023, 48(72), 28091. 66 Miyamura H, Takada M, Hirose K, et al. Journal of Alloys and Compounds, 2003, 356, 755. 67 Spodaryk M, Shcherbakova L, Sameljuk A, et al. Journal of Alloys and Compounds, 2015, 621, 225. 68 Zhang H, Bao L, Qi J, et al. Renewable Energy, 2020, 157, 1053. 69 Zhang H, Fu L, Xuan W, et al. Renewable Energy, 2020, 145, 1572. 70 Han Z, Zhai T, Yuan Z, et al. Materials Today Communications, 2023, 35, 105613. 71 Shang H, Zhang Y, Gao J, et al. International Journal of Hydrogen Energy, 2022, 47(2), 1036.