Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 11-15    https://doi.org/10.11896/j.issn.1005-023X.2017.010.003
  材料研究 |
预歧化处理的高性能锂离子电池SiO/C负极材料*
夏文明1,2,唐仁衡2,王辉1,王英2,肖方明2,朱敏1,孙泰2
1 华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室, 广州 510641;
2 广东省稀有金属研究所,广东省稀土开发及应用重点实验室, 广州 510650
High-performance SiO/C Anode Material in Li-ion Battery by Pre-disproportionation Treatment
XIA Wenming1,2, TANG Renheng2, WANG Hui1, WANG Ying2,XIAO Fangming2, ZHU Min1, SUN Tai2
1 Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641;
2 Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangdong Research Institute of Rare Metals, Guangzhou 510650
下载:  全 文 ( PDF ) ( 1323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以SiO和蔗糖为原料,SiO经高温歧化反应处理后,通过机械球磨、喷雾干燥、高温热解工艺制备出具有优异电化学性能的锂离子电池SiO/C负极材料。经XRD、FTIR、XPS、SEM、TEM结构分析表明,歧化反应处理的片状SiO包含非晶态SiO和纳米晶相Si、SiO2,蔗糖热解形成的无定形碳包覆在细片状SiO的表面,组成球形SiO/C颗粒。电化学测试结果表明,预歧化处理的SiO/C复合材料的首次放电容量为1 314.6 mAh/g,首次库伦效率达到71%;100周循环后的放电容量为851.2 mAh/g,容量保持率达到78.5%,循环稳定性远高于未经歧化处理的SiO/C复合材料。电化学性能的提高归因于SiO预歧化反应及热解碳包覆。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏文明
唐仁衡
王辉
王英
肖方明
朱敏
孙泰
关键词:  锂离子电池  SiO/C负极材料  歧化反应  循环性能    
Abstract: Starting from the SiO and sucrose, a SiO/C composite for Li-ion battery anode material with excellent electrochemical performance was prepared by the disproportionation treatment of SiO at high temperature, which was followed by mechanical milling, spray drying and pyrolysis. XRD, FTIR, XPS, SEM, TEM analysis indicated that there exist amorphous SiO, crystalline Si and SiO2 in the disproportionated SiO plates, and the prepared spherical SiO/C particles were composed of refined SiO plates, which were coated with pyrolyzed disordered carbon. The pre-disproportionated SiO/C composite exhibited an initial discharge capacity of 1 314.6 mAh/g with an initial Coulombic efficiency of 71% at 100 mA/g, and a discharge capacity of 851.2 mAh/g after 100 cycles. The capacity retention of disproportionated SiO/C composite was 78.5%, which was much higher than that for undisproportionated SiO/C composite. The excellent electrochemical performances are attributed to the disproportionation of SiO and the pyrolytic carbon coating.
Key words:  lithium-ion batteries    SiO/C anode material    disproportionation reaction    cyclic performance
发布日期:  2018-05-08
ZTFLH:  TM912.9  
基金资助: *广东省省级科技计划项目(2015B010116002);广东省自然科学基金(2014A030308015)
通讯作者:  王辉,男,1974年生,博士,教授,博士研究生导师,研究方向为纳米功能材料E-mail:mehwang@scut.edu.cn   
作者简介:  夏文明:男,1990年生,硕士研究生,研究方向为锂离子电池负极材料E-mail:1084000825@qq.com
引用本文:    
夏文明,唐仁衡,王辉,王英,肖方明,朱敏,孙泰. 预歧化处理的高性能锂离子电池SiO/C负极材料*[J]. 材料导报编辑部, 2017, 31(10): 11-15.
XIA Wenming,TANG Renheng, WANG Hui, WANG Ying,XIAO Fangming, ZHU Min, SUN Tai. High-performance SiO/C Anode Material in Li-ion Battery by Pre-disproportionation Treatment. Materials Reports, 2017, 31(10): 11-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.003  或          https://www.mater-rep.com/CN/Y2017/V31/I10/11
1 Yu B C, Hwa Y, Kim J H,et al. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochim Acta,2014,117(4):426.
2 Zhou M, Pu F, Wang Z, et al. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries[J]. Phys Chem Chem Phys Pccp,2013,15(27):11394.
3 Tu J, Yuan Y, Zhan P, et al. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance[J]. J Phys Chem C,2014,118(14):7357.
4 Ren Y, Li M. Si-SiOx-cristobalite/graphite composite as anode for Li-ion batteries[J]. Electrochim Acta,2014,142(142):11.
5 Zhang H, Braun P V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes[J]. Nano Lett,2012,12(6):2778.
6 Shi J, Liang Y, Li L, et al. Evaluation of the electrochemical cha-racteristics of silicon/lithium titanate composite as anode material for lithium ion batteries[J]. Electrochim Acta,2015,155(29):125.
7 Zheng Y, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage[J]. Electrochim Acta,2012,66(4):75.
8 Ji L, Zhang X. Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries[J]. Electrochem Commun,2009,11(3):684.
9 Yu B C, Hwa Y, Park C M, et al. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries[J]. J Mater Chem A,2013,1(1):4820.
10 Wang J, Hou X H, Li M, et al. Preparation and Li-intercalating performance research of SiO/C as anode materials for Li-ion battery[J]. Chin Battery Ind,2013,18(3):147(in Chinese).
王洁, 侯贤华, 李敏,等. 锂离子电池SiO/C负极材料制备与嵌锂性能研究[J]. 电池工业,2013,18(3):147.
11 Hwa Y, Park C M, Sohn H J, et al. Modified SiO as a high performance anode for Li-ion batteries[J]. J Power Sources,2013,222(2):129.
12 Chung C K, Chen T Y, Lai C W, et al. Low-temperature formation of nanocrystalline SiC particles and composite from three-layer Si/C/Si film for the novel enhanced white photoluminescence[J]. J Nanopart Res,2011,13(10):4821.
13 Kim J H, Park C M, Kim H,et al. Electrochemical behavior of SiO anode for Li secondary batteries[J]. J Electroanal Chem,2011,661(1):245.
14 Guo C, Wang D, Liu T, et al. A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batte-ries[J]. J Mater Chem A,2014,2(10):3521.
15 Dong J L, Ryou M H,Lee J N, et al. Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries[J]. Electrochem Commun,2013,34(5):98.
16 He Y, Yu X, Li G, et al. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. J Power Sources,2012,216(11):131.
17 Kajita T, Yuge R, Nakahara K, et al. Deterioration analysis in cycling test at high temperature of 60 degrees C for Li-ion cells using SiO anode[J]. J Electrochem Soc,2014,161(5):A708.
18 Kim K W, Park H, Lee J G, et al. Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries[J]. Electrochim Acta,2013,103(8):226.
19 Chen X, Li X, Ding F, et al. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes[J]. Nano Lett,2012,12(8):4124.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[4] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[5] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[6] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[7] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[8] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[9] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[10] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[11] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[12] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[13] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[14] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[15] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed