Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23080132-11    https://doi.org/10.11896/cldb.23080132
  电化学能源材料与器件 |
基于阴离子交换膜电解水的离聚物研究进展
赵涔凯1, 邹杰鑫2, 王旻1,*, 李思明3, 赵微1, 张时林1, 滕珏瑾1, 王艳皎1, 吴明铂1, 胡涵1,*, 李亚伟3,4,*
1 中国石油大学(华东)化学化工学院重质油国家重点实验室,山东 青岛 266580
2 青岛海尔智能技术研发有限公司,山东 青岛 266101
3 山西大学化学化工学院,太原 030006
4 能量转换与储存材料山西省重点实验室,太原 030006
Research Progress of Ionomers for Anion Exchange Membrane Water Electrolysis
ZHAO Cenkai1, ZOU Jiexin2, WANG Min1,*, LI Siming3, ZHAO Wei1, ZHANG Shilin1, TENG Juejin1, WANG Yanjiao1, WU Mingbo1, HU Han1,*, LI Yawei3,4,*
1 State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 Qingdao Haier Smart Technology R&D Co., Ltd., Qingdao 266101, Shandong, China
3 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
4 Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan 030006, China
下载:  全 文 ( PDF ) ( 28197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在能源日益匮乏的今天,氢能作为一种可再生、绿色环保的新型能源成为全球节能降碳的重要载体。传统的碱水电解(Alkaline water electrolysis,AWE)制氢要求较高pH的碱液作为电解液,而且只能在低电流密度下工作;质子交换膜电解水(Proton exchange membrane water electrolysis,PEMWE)制氢技术具有电流密度大、效率高的特点,被人们视为最有前景的电解水制氢技术,但是其昂贵的催化剂以及所需的高耐酸性部件成为制约PEMWE发展的重要因素。阴离子交换膜电解水(Anion exchange membrane water electrolysis,AEMWE)作为一种新兴的技术,可以实现低成本“绿氢”制备。相较于AWE,AEMWE避免了高浓度碱液的循环;相较于PEMWE,AEMWE则具有成本低、腐蚀性低等优势。离聚物作为关键部件膜电极(Membrane electrode assembly,MEA)中三相界面(Triple phase boundary,TPB)的重要组成部分,对AEMWE内部催化作用和水管理能力起着重要作用。本文首先围绕AEMWE技术原理和离聚物在AEMWE中的作用进行了概述,随后对常见的不同种类的阴离子离聚物结构及特点进行了总结,最后从结构、含量以及添加剂调控三种调控策略入手,针对如何调控离聚物以达到更加优异的电解性能进行了具体的分析总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵涔凯
邹杰鑫
王旻
李思明
赵微
张时林
滕珏瑾
王艳皎
吴明铂
胡涵
李亚伟
关键词:  阴离子交换膜  电解水  离聚物  三相界面  调控策略    
Abstract: Nowadays, as the energy scarce increasing, hydrogen energy has emerged as a renewable and environmental-friendly new energy source. It serves as an important energy carrier for global energy conservation and carbon reduction. Traditional alkaline water electrolysis (AWE) is the most common method for hydrogen production, but it requires alkaline solution with high pH as the electrolyte and can only operate at low current density; proton exchange membrane water electrolysis (PEMWE) technology, on the other hand, can be operated at high current density with high efficiency, making it the most promising water electrolysis technology for hydrogen production. However, the expensive catalyst and need for acid-resistant components are important challenges that hinder its development. Anion exchange membrane water electrolysis (AEMWE) is a promising new technology for green and cost-effective hydrogen production. Comparing with AWE, it avoids the circulation of concentrated alkaline solution. Comparing with PEMWE, it offers advantages such as lower cost and lower corrosiveness. Ionomers, as a key component of the triple phase boundary (TPB) in the membrane electrode assembly (MEA), play a crucial role in the catalytic capabilities and water management of AEMWE. This review firstly aims to provide an overview of AEMWE technology and the importance of ionomer in MEA. It also summarizes the structures and characteristics of representative ionomers adopted in AEMWE. Finally, this review explores strategies to improve the electrolytic performance of AEMWE through ionomer regulations from three aspects: structural regulation, content regulation and additive re-gulation.
Key words:  anion exchange membrane    water electrolysis    ionomer    triple phase boundary    regulating strategy
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ317  
基金资助: 国家自然科学基金(22208376);青岛新能源山东省实验室开放课题项目(QNESL OP 202303);山东省自然科学基金创新发展联合基金(ZR2023LFG005);山东博士后科学基金(SDBX202302037);山西省留学人员科技活动择优资助项目(20230002)
通讯作者:  *王旻,中国石油大学(华东)副教授。2017年于美国凯斯西储大学获博士学位,之后于美国能源部国家可再生能源实验室开展博士后研究。2022年加入中国石油大学(华东)新能源学院,研究方向包括电催化、聚合物电解质膜燃料电池以及绿氢生产。已在Advanced Materials、Chemical Enginee-ring Journal、Chem Catalysis等国际学术刊物上发表SCI论文40余篇。minwang@upc.edu.cn
胡涵,博士,中国石油大学(华东)教授。主要致力于新能源材料、先进碳材料及无机非金属纳米材料的设计及控制制备研究,已在Angewandte Chemie International Edition、Advanced Mate-rials、Journal of the American Chemical Society、Matter、Chem、Advanced Functional Materials、ACS Nano等国际学术刊物上发表SCI论文70余篇。hhu@upc.edu.cn
李亚伟,山西大学教授,博士毕业于美国德雷克塞尔大学,之后在美国能源部国家可再生能源实验室燃料电池课题组开展博士后研究。2021年2月加入山西大学,长期致力于微纳米结构电催化材料的控制合成、形态结构和性能调控,电化学界面修饰工程、燃料电池膜电极开发与诊断技术等方面的研究。已在Nano Energy、ACS Energy Letters、ACS Catalysis、Journal of Catalysis等国际学术刊物上发表SCI论文40余篇。yaweili@sxu.edu.cn   
作者简介:  赵涔凯,2023年6月于中国石油大学(华东)获得理学学士学位,现为中国石油大学(华东)化学化工学院硕士研究生,在胡涵教授、王旻副教授的指导下进行研究。目前主要研究领域为阴离子交换膜电解水制氢。
引用本文:    
赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
ZHAO Cenkai, ZOU Jiexin, WANG Min, LI Siming, ZHAO Wei, ZHANG Shilin, TENG Juejin, WANG Yanjiao, WU Mingbo, HU Han, LI Yawei. Research Progress of Ionomers for Anion Exchange Membrane Water Electrolysis. Materials Reports, 2024, 38(8): 23080132-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080132  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23080132
1 Dillman K J, Heinonen J. Renewable and Sustainable Energy Reviews, 2022, 167, 112648.
2 Turner J M. Science, 2022, 376(6600), 1361.
3 van der Spek M, Banet C, Bauer C, et al. Energy & Environmental Science, 2022, 15(3), 1034.
4 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 44(8), 2060.
5 Hao A, Wan X, Liu X, et al. Nano Research Energy, 2022, 1, e9120013.
6 Liu Z. Energy Sources Part B: Economics, Planning, and Policy, 2018, 13(2), 132.
7 Wang Y, Wang M, Yang Y, et al. Chem Catalysis, 2023, 3(7), 100643.
8 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(16), 164514.
9 Li D, Park E J, Zhu W, et al. Nature Energy, 2020, 5(5), 378.
10 Zhang K, Liang X, Wang L, et al. Nano Research Energy, 2022, 1, e9120032.
11 Adhikari S, Pagels M K, Jeon J Y, et al. Polymer, 2020, 211, 123080.
12 Buttler A, Spliethoff H. Renewable and Sustainable Energy Reviews, 2018, 82, 2440.
13 Schmidt O, Gambhir A, Staffell I, et al. International Journal of Hydrogen Energy, 2017, 42(52), 30470.
14 Naughton M S, Brushett F R, Kenis P J A. Journal of Power Sources, 2011, 196(4), 1762.
15 Zou J, Huang H, Zaman S, et al. Chemical Engineering Journal, 2023, 457, 141113.
16 Bernt M, Gasteiger H A. Journal of the Electrochemical Society, 2016, 163(11), F3179.
17 Kang Z, Wang M, Yang Y, et al. International Journal of Hydrogen Energy, 2022, 47(9), 5807.
18 Zhao S, Wang Y, Dong J, et al. Nature Energy, 2016, 1(12), 16184.
19 Suntivich J, May K J, Gasteiger H A, et al. Science, 2011, 334(6061), 1383.
20 Niether C, Faure S, Bordet A, et al. Nature Energy, 2018, 3(6), 476.
21 Chen N, Paek S Y, Lee J Y, et al. Energy & Environmental Science, 2021, 14(12), 6338.
22 Chen P, Hu X. Advanced Energy Materials, 2020, 10(39), 2002285.
23 Huang C, Zhou Q, Yu L, et al. Advanced Energy Materials, 2023, 13(32), 2301475.
24 Razmjooei F, Morawietz T, Taghizadeh E, et al. Joule, 2021, 5(7), 1776.
25 Xu Q, Zhang L, Zhang J, et al. EnergyChem, 2022, 4(5), 100087.
26 Ahlfield J, Huang G, Liu L, et al. Journal of the Electrochemical Society, 2017, 164(14), F1648.
27 Faid A Y, Xie L, Barnett A O, et al. International Journal of Hydrogen Energy, 2020, 45(53), 28272.
28 Jervis R, Mansor N, Sobrido A J, et al. Journal of the Electrochemical Society, 2017, 164(14), F1551.
29 Fang S, Liu G, Li M, et al. ACS Applied Energy Materials, 2023, 6(6), 3590.
30 Lenser C, Patt M, Menzel S, et al. Advanced Functional Materials, 2014, 24(28), 4466.
31 Kim O H, Oh S H, Ahn C Y, et al. Fuel Cells, 2018, 18(6), 711.
32 Zhao J, Zou X, Pan J, et al. Chemical Engineering Journal, 2023, 452, 139498.
33 Lin N, Zausch J. Chemical Engineering Science, 2022, 253, 117600.
34 Yang H, Driess M, Menezes P W. Advanced Energy Materials, 2021, 11(39), 2102074.
35 Wan L, Liu J, Xu Z, et al. Small, 2022, 18(21), 2200380.
36 Peckham T J, Holdcroft S. Advanced Materials, 2010, 22(42), 4667.
37 Huang J, Yu Z, Tang J, et al. International Journal of Hydrogen Energy, 2022, 47(65), 27800.
38 Weber A Z, Kusoglu A. Journal of Materials Chemistry A, 2014, 2(41), 17207.
39 Li D, Matanovic I, Lee A S, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 9696.
40 Varcoe J R, Atanassov P, Dekel D R, et al. Energy & Environmental Science, 2014, 7(10), 3135.
41 Kim D S, Labouriau A, Guiver M D, et al. Chemistry of Materials, 2011, 23(17), 3795.
42 Noonan K J T, Hugar K M, Kostalik H A I V, et al. Journal of the Ame-rican Chemical Society, 2012, 134(44), 18161.
43 Zha Y, Disabb-Miller M L, Johnson Z D, et al. Journal of the American Chemical Society, 2012, 134(10), 4493.
44 Park E J, Kim Y S. Journal of Materials Chemistry A, 2018, 6(32), 15456.
45 Pan J, Lu S, Li Y, et al. Advanced Functional Materials, 2010, 20(2), 312.
46 Mohanty A D, Tignor S E, Krause J A, et al. Macromolecules, 2016, 49(9), 3361.
47 Liu L, Chu X, Liao J, et al. Energy & Environmental Science, 2018, 11(2), 435.
48 Pan J, Li Y, Han J, et al. Energy & Environmental Science, 2013, 6(10), 2912.
49 Kaczur J J, Yang H, Liu Z, et al. Frontiers in Chemistry, 2018, 6, 263.
50 Xue J, Zhang J, Liu X, et al. Electrochemical Energy Reviews, 2022, 5(2), 348.
51 Marino M G, Kreuer K D. ChemSusChem, 2015, 8(3), 513.
52 You W, Noonan K J T, Coates G W. Progress in Polymer Science, 2020, 100, 101177.
53 Wang J, Zhao Y, Setzler B P, et al. Nature Energy, 2019, 4(5), 392.
54 Gottesfeld S, Dekel D R, Page M, et al. Journal of Power Sources, 2018, 375, 170.
55 Leonard D P, Lehmann M, Klein J M, et al. Advanced Energy Materials, 2023, 13(3), 2203488.
56 Guo M, Ban T, Wang Y, et al. Journal of Membrane Science, 2022, 647, 120299.
57 Zhang C, Guo Z, Tian Y, et al. Nano Research Energy, 2023, 2, e9120063.
58 Yang Y, Li P, Zheng X, et al. Chemical Society Reviews, 2022, 51(23), 9620.
59 Matanovic I, Maurya S, Park E J, et al. Chemistry of Materials, 2019, 31(11), 4195.
60 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2021, 168(2), 024503.
61 Olsson J S, Pham T H, Jannasch P. Advanced Functional Materials, 2018, 28(2), 1702758.
62 Zhang J, Zhang K, Liang X, et al. Journal of Materials Chemistry A, 2021, 9(1), 327.
63 Liu X, Wu D, Liu X, et al. Electrochimica Acta, 2020, 336, 135757.
64 Guo M, Ban T, Wang Y, et al. Journal of Colloid and Interface Science, 2023, 638, 349.
65 Buggy N C, Wu I, Du Y, et al. Electrochimica Acta, 2022, 412, 140124.
66 Ott S, Orfanidi A, Schmies H, et al. Nature Materials, 2020, 19(1), 77.
67 Kim C, Bui J C, Luo X, et al. Nature Energy, 2021, 6(11), 1026.
68 Lim A, Kim H J, Henkensmeier D, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 410.
69 Chen N, Lee Y M. Progress in Polymer Science, 2021, 113, 101345.
70 Koch S, Heizmann P A, Kilian S K, et al. Journal of Materials Chemistry A, 2021, 9(28), 15744.
71 Cossar E, Murphy F, Walia J, et al. ACS Applied Energy Materials, 2022, 5(8), 9938.
72 Plevová M, Hnát J, Žitka J, et al. Journal of Power Sources, 2022, 539, 231476.
73 Yassin K, Rasin I G, Brandon S, et al. Journal of Power Sources, 2022, 524, 231083.
74 Wang M, Park J H, Kabir S, et al. ACS Applied Energy Materials, 2019, 2(9), 6417.
75 Mauger S A, Wang M, Cetinbas F C, et al. Journal of Power Sources, 2021, 506, 230039.
76 Mauger S A, Pfeilsticker J R, Wang M, et al. Journal of Power Sources, 2020, 450, 227581.
77 Jiang Z, Yi G, Yao X, et al. Chemical Engineering Journal, 2023, 467, 143442.
78 Alia S M, Pivovar B S. Journal of the Electrochemical Society, 2018, 165(7), F441.
79 Vincent I, Kruger A, Bessarabov D. International Journal of Hydrogen Energy, 2017, 42(16), 10752.
80 Mandal M, Huang G, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(5), 054501.
81 Omasta T J, Wang L, Peng X, et al. Journal of Power Sources, 2018, 375, 205.
82 Omasta T J, Park A M, LaManna J M, et al. Energy & Environmental Science, 2018, 11(3), 551.
83 Dekel D R. Journal of Power Sources, 2018, 375, 158.
84 Dekel D R, Rasin I G, Page M, et al. Journal of Power Sources, 2018, 375, 191.
85 Yang D, Yu H, Li G, et al. Journal of Power Sources, 2014, 267, 39.
86 Lees E W, Mowbray B A W, Parlane F G L, et al. Nature Reviews Materials, 2022, 7(1), 55.
[1] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[2] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[3] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[4] 柴瑞瑞, 桑欣欣, 欧世国, 李家豪, 王大伟. 生物基MOFs衍生Co9S8/N,O-C电催化剂的析氧性能[J]. 材料导报, 2024, 38(19): 22120095-8.
[5] 狄大程, 李明哲, 李羿龙, 凌子昱, 吕玉珍, 陈克丕. 质子交换膜电解水用非贵金属基析氧反应催化剂的研究进展[J]. 材料导报, 2024, 38(13): 23020032-16.
[6] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[7] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[8] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[9] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[10] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[11] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[12] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed