Research Progress of Ionomers for Anion Exchange Membrane Water Electrolysis
ZHAO Cenkai1, ZOU Jiexin2, WANG Min1,*, LI Siming3, ZHAO Wei1, ZHANG Shilin1, TENG Juejin1, WANG Yanjiao1, WU Mingbo1, HU Han1,*, LI Yawei3,4,*
1 State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China 2 Qingdao Haier Smart Technology R&D Co., Ltd., Qingdao 266101, Shandong, China 3 School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China 4 Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan 030006, China
Abstract: Nowadays, as the energy scarce increasing, hydrogen energy has emerged as a renewable and environmental-friendly new energy source. It serves as an important energy carrier for global energy conservation and carbon reduction. Traditional alkaline water electrolysis (AWE) is the most common method for hydrogen production, but it requires alkaline solution with high pH as the electrolyte and can only operate at low current density; proton exchange membrane water electrolysis (PEMWE) technology, on the other hand, can be operated at high current density with high efficiency, making it the most promising water electrolysis technology for hydrogen production. However, the expensive catalyst and need for acid-resistant components are important challenges that hinder its development. Anion exchange membrane water electrolysis (AEMWE) is a promising new technology for green and cost-effective hydrogen production. Comparing with AWE, it avoids the circulation of concentrated alkaline solution. Comparing with PEMWE, it offers advantages such as lower cost and lower corrosiveness. Ionomers, as a key component of the triple phase boundary (TPB) in the membrane electrode assembly (MEA), play a crucial role in the catalytic capabilities and water management of AEMWE. This review firstly aims to provide an overview of AEMWE technology and the importance of ionomer in MEA. It also summarizes the structures and characteristics of representative ionomers adopted in AEMWE. Finally, this review explores strategies to improve the electrolytic performance of AEMWE through ionomer regulations from three aspects: structural regulation, content regulation and additive re-gulation.
基金资助: 国家自然科学基金(22208376);青岛新能源山东省实验室开放课题项目(QNESL OP 202303);山东省自然科学基金创新发展联合基金(ZR2023LFG005);山东博士后科学基金(SDBX202302037);山西省留学人员科技活动择优资助项目(20230002)
通讯作者:
*王旻,中国石油大学(华东)副教授。2017年于美国凯斯西储大学获博士学位,之后于美国能源部国家可再生能源实验室开展博士后研究。2022年加入中国石油大学(华东)新能源学院,研究方向包括电催化、聚合物电解质膜燃料电池以及绿氢生产。已在Advanced Materials、Chemical Enginee-ring Journal、Chem Catalysis等国际学术刊物上发表SCI论文40余篇。minwang@upc.edu.cn 胡涵,博士,中国石油大学(华东)教授。主要致力于新能源材料、先进碳材料及无机非金属纳米材料的设计及控制制备研究,已在Angewandte Chemie International Edition、Advanced Mate-rials、Journal of the American Chemical Society、Matter、Chem、Advanced Functional Materials、ACS Nano等国际学术刊物上发表SCI论文70余篇。hhu@upc.edu.cn 李亚伟,山西大学教授,博士毕业于美国德雷克塞尔大学,之后在美国能源部国家可再生能源实验室燃料电池课题组开展博士后研究。2021年2月加入山西大学,长期致力于微纳米结构电催化材料的控制合成、形态结构和性能调控,电化学界面修饰工程、燃料电池膜电极开发与诊断技术等方面的研究。已在Nano Energy、ACS Energy Letters、ACS Catalysis、Journal of Catalysis等国际学术刊物上发表SCI论文40余篇。yaweili@sxu.edu.cn
赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
ZHAO Cenkai, ZOU Jiexin, WANG Min, LI Siming, ZHAO Wei, ZHANG Shilin, TENG Juejin, WANG Yanjiao, WU Mingbo, HU Han, LI Yawei. Research Progress of Ionomers for Anion Exchange Membrane Water Electrolysis. Materials Reports, 2024, 38(8): 23080132-11.
1 Dillman K J, Heinonen J. Renewable and Sustainable Energy Reviews, 2022, 167, 112648. 2 Turner J M. Science, 2022, 376(6600), 1361. 3 van der Spek M, Banet C, Bauer C, et al. Energy & Environmental Science, 2022, 15(3), 1034. 4 Jiao Y, Zheng Y, Jaroniec M, et al. Chemical Society Reviews, 2015, 44(8), 2060. 5 Hao A, Wan X, Liu X, et al. Nano Research Energy, 2022, 1, e9120013. 6 Liu Z. Energy Sources Part B: Economics, Planning, and Policy, 2018, 13(2), 132. 7 Wang Y, Wang M, Yang Y, et al. Chem Catalysis, 2023, 3(7), 100643. 8 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(16), 164514. 9 Li D, Park E J, Zhu W, et al. Nature Energy, 2020, 5(5), 378. 10 Zhang K, Liang X, Wang L, et al. Nano Research Energy, 2022, 1, e9120032. 11 Adhikari S, Pagels M K, Jeon J Y, et al. Polymer, 2020, 211, 123080. 12 Buttler A, Spliethoff H. Renewable and Sustainable Energy Reviews, 2018, 82, 2440. 13 Schmidt O, Gambhir A, Staffell I, et al. International Journal of Hydrogen Energy, 2017, 42(52), 30470. 14 Naughton M S, Brushett F R, Kenis P J A. Journal of Power Sources, 2011, 196(4), 1762. 15 Zou J, Huang H, Zaman S, et al. Chemical Engineering Journal, 2023, 457, 141113. 16 Bernt M, Gasteiger H A. Journal of the Electrochemical Society, 2016, 163(11), F3179. 17 Kang Z, Wang M, Yang Y, et al. International Journal of Hydrogen Energy, 2022, 47(9), 5807. 18 Zhao S, Wang Y, Dong J, et al. Nature Energy, 2016, 1(12), 16184. 19 Suntivich J, May K J, Gasteiger H A, et al. Science, 2011, 334(6061), 1383. 20 Niether C, Faure S, Bordet A, et al. Nature Energy, 2018, 3(6), 476. 21 Chen N, Paek S Y, Lee J Y, et al. Energy & Environmental Science, 2021, 14(12), 6338. 22 Chen P, Hu X. Advanced Energy Materials, 2020, 10(39), 2002285. 23 Huang C, Zhou Q, Yu L, et al. Advanced Energy Materials, 2023, 13(32), 2301475. 24 Razmjooei F, Morawietz T, Taghizadeh E, et al. Joule, 2021, 5(7), 1776. 25 Xu Q, Zhang L, Zhang J, et al. EnergyChem, 2022, 4(5), 100087. 26 Ahlfield J, Huang G, Liu L, et al. Journal of the Electrochemical Society, 2017, 164(14), F1648. 27 Faid A Y, Xie L, Barnett A O, et al. International Journal of Hydrogen Energy, 2020, 45(53), 28272. 28 Jervis R, Mansor N, Sobrido A J, et al. Journal of the Electrochemical Society, 2017, 164(14), F1551. 29 Fang S, Liu G, Li M, et al. ACS Applied Energy Materials, 2023, 6(6), 3590. 30 Lenser C, Patt M, Menzel S, et al. Advanced Functional Materials, 2014, 24(28), 4466. 31 Kim O H, Oh S H, Ahn C Y, et al. Fuel Cells, 2018, 18(6), 711. 32 Zhao J, Zou X, Pan J, et al. Chemical Engineering Journal, 2023, 452, 139498. 33 Lin N, Zausch J. Chemical Engineering Science, 2022, 253, 117600. 34 Yang H, Driess M, Menezes P W. Advanced Energy Materials, 2021, 11(39), 2102074. 35 Wan L, Liu J, Xu Z, et al. Small, 2022, 18(21), 2200380. 36 Peckham T J, Holdcroft S. Advanced Materials, 2010, 22(42), 4667. 37 Huang J, Yu Z, Tang J, et al. International Journal of Hydrogen Energy, 2022, 47(65), 27800. 38 Weber A Z, Kusoglu A. Journal of Materials Chemistry A, 2014, 2(41), 17207. 39 Li D, Matanovic I, Lee A S, et al. ACS Applied Materials & Interfaces, 2019, 11(10), 9696. 40 Varcoe J R, Atanassov P, Dekel D R, et al. Energy & Environmental Science, 2014, 7(10), 3135. 41 Kim D S, Labouriau A, Guiver M D, et al. Chemistry of Materials, 2011, 23(17), 3795. 42 Noonan K J T, Hugar K M, Kostalik H A I V, et al. Journal of the Ame-rican Chemical Society, 2012, 134(44), 18161. 43 Zha Y, Disabb-Miller M L, Johnson Z D, et al. Journal of the American Chemical Society, 2012, 134(10), 4493. 44 Park E J, Kim Y S. Journal of Materials Chemistry A, 2018, 6(32), 15456. 45 Pan J, Lu S, Li Y, et al. Advanced Functional Materials, 2010, 20(2), 312. 46 Mohanty A D, Tignor S E, Krause J A, et al. Macromolecules, 2016, 49(9), 3361. 47 Liu L, Chu X, Liao J, et al. Energy & Environmental Science, 2018, 11(2), 435. 48 Pan J, Li Y, Han J, et al. Energy & Environmental Science, 2013, 6(10), 2912. 49 Kaczur J J, Yang H, Liu Z, et al. Frontiers in Chemistry, 2018, 6, 263. 50 Xue J, Zhang J, Liu X, et al. Electrochemical Energy Reviews, 2022, 5(2), 348. 51 Marino M G, Kreuer K D. ChemSusChem, 2015, 8(3), 513. 52 You W, Noonan K J T, Coates G W. Progress in Polymer Science, 2020, 100, 101177. 53 Wang J, Zhao Y, Setzler B P, et al. Nature Energy, 2019, 4(5), 392. 54 Gottesfeld S, Dekel D R, Page M, et al. Journal of Power Sources, 2018, 375, 170. 55 Leonard D P, Lehmann M, Klein J M, et al. Advanced Energy Materials, 2023, 13(3), 2203488. 56 Guo M, Ban T, Wang Y, et al. Journal of Membrane Science, 2022, 647, 120299. 57 Zhang C, Guo Z, Tian Y, et al. Nano Research Energy, 2023, 2, e9120063. 58 Yang Y, Li P, Zheng X, et al. Chemical Society Reviews, 2022, 51(23), 9620. 59 Matanovic I, Maurya S, Park E J, et al. Chemistry of Materials, 2019, 31(11), 4195. 60 Huang G, Mandal M, Hassan N U, et al. Journal of the Electrochemical Society, 2021, 168(2), 024503. 61 Olsson J S, Pham T H, Jannasch P. Advanced Functional Materials, 2018, 28(2), 1702758. 62 Zhang J, Zhang K, Liang X, et al. Journal of Materials Chemistry A, 2021, 9(1), 327. 63 Liu X, Wu D, Liu X, et al. Electrochimica Acta, 2020, 336, 135757. 64 Guo M, Ban T, Wang Y, et al. Journal of Colloid and Interface Science, 2023, 638, 349. 65 Buggy N C, Wu I, Du Y, et al. Electrochimica Acta, 2022, 412, 140124. 66 Ott S, Orfanidi A, Schmies H, et al. Nature Materials, 2020, 19(1), 77. 67 Kim C, Bui J C, Luo X, et al. Nature Energy, 2021, 6(11), 1026. 68 Lim A, Kim H J, Henkensmeier D, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 410. 69 Chen N, Lee Y M. Progress in Polymer Science, 2021, 113, 101345. 70 Koch S, Heizmann P A, Kilian S K, et al. Journal of Materials Chemistry A, 2021, 9(28), 15744. 71 Cossar E, Murphy F, Walia J, et al. ACS Applied Energy Materials, 2022, 5(8), 9938. 72 Plevová M, Hnát J, Žitka J, et al. Journal of Power Sources, 2022, 539, 231476. 73 Yassin K, Rasin I G, Brandon S, et al. Journal of Power Sources, 2022, 524, 231083. 74 Wang M, Park J H, Kabir S, et al. ACS Applied Energy Materials, 2019, 2(9), 6417. 75 Mauger S A, Wang M, Cetinbas F C, et al. Journal of Power Sources, 2021, 506, 230039. 76 Mauger S A, Pfeilsticker J R, Wang M, et al. Journal of Power Sources, 2020, 450, 227581. 77 Jiang Z, Yi G, Yao X, et al. Chemical Engineering Journal, 2023, 467, 143442. 78 Alia S M, Pivovar B S. Journal of the Electrochemical Society, 2018, 165(7), F441. 79 Vincent I, Kruger A, Bessarabov D. International Journal of Hydrogen Energy, 2017, 42(16), 10752. 80 Mandal M, Huang G, Hassan N U, et al. Journal of the Electrochemical Society, 2020, 167(5), 054501. 81 Omasta T J, Wang L, Peng X, et al. Journal of Power Sources, 2018, 375, 205. 82 Omasta T J, Park A M, LaManna J M, et al. Energy & Environmental Science, 2018, 11(3), 551. 83 Dekel D R. Journal of Power Sources, 2018, 375, 158. 84 Dekel D R, Rasin I G, Page M, et al. Journal of Power Sources, 2018, 375, 191. 85 Yang D, Yu H, Li G, et al. Journal of Power Sources, 2014, 267, 39. 86 Lees E W, Mowbray B A W, Parlane F G L, et al. Nature Reviews Materials, 2022, 7(1), 55.