Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23040278-4    https://doi.org/10.11896/cldb.23040278
  电化学能源材料与器件 |
导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用
黄旭锐1, 余喻天2,*, 雷金勇1, 郝敬轩2, 俞传鑫2,3, 潘军1, 杨怡萍1, 廖梓豪1, 关成志2, 王建强2
1 广东电网有限责任公司广州供电局,广州 510600
2 中国科学院上海应用物理研究所,上海 201800
3 东华大学环境科学与工程学院,上海 201620
Application of Electrically-conductive (Cu, Mn)3O4 Contact Layer on Anode-Side of SOEC
HUANG Xurui1, YU Yutian2,*, LEI Jinyong1, HAO Jingxuan2, YU Chuanxin2,3, PAN Jun1, YANG Yiping1, LIAO Zihao1, GUAN Chengzhi2, WANG Jianqiang2
1 Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510600, China
2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3 College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 7736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体氧化物电解池(SOEC)中铁素体不锈钢合金连接体和电解池阳极之间存在界面接触、连接体表面氧化以及氧电极“铬毒化”等问题,是导致电解堆性能衰减的重要影响因素之一。本工作利用反应烧结工艺在连接体与阳极之间制备了多孔的(Cu,Mn)3O4导电接触层,形成了粘结强度高的连接体/接触层/电解池界面结构。所得试样在750 ℃下表现出优异的电性能,整个500 h测试过程半电池的面比电阻(ASR)值稳定保持在20.13~20.32 mΩ·cm2。通过微观结构表征技术证实,多孔(Cu,Mn)3O4接触层与相邻的电解堆部件具有良好的兼容性,并可以抑制连接体表面的氧化薄膜增长,同时阻止铬元素的迁移。(Cu,Mn)3O4接触层也降低了电解池与集流体之间的接触电阻,提高了电池电化学输出性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄旭锐
余喻天
雷金勇
郝敬轩
俞传鑫
潘军
杨怡萍
廖梓豪
关成志
王建强
关键词:  固体氧化物电解池  阳极接触层  (Cu,Mn)3O4尖晶石  反应烧结  面比电阻(ASR)    
Abstract: In SOEC stack, several issues including high contact resistance, oxidation of interconnect surface as well as anode‘ Cr poisoning’ exist between the interconnect and anode, which can significantly result in performance degradation for the stack. In this study, the (Cu, Mn)3O4-based spinel was evaluated as the SOEC anode-side contact material. A mixture of Mn and CuO was thermally converted into the spinel layer to lower the sintering temperature and enhance the performance. A simulated interconnect/contact/anode cell was fabricated to investigate the effectiveness of the reactively-sintered contact layer on the electrical performance and chemical compatibility. The tested cell exhibited extremely stable behavior with an ASR of only 20.13—20.32 mΩ·cm2. While the Cr-rich oxide scale was effectively reduced, no obvious interdiffusion was observed between the contact layer and adjacent cell component at each interface. The (Cu, Mn)3O4 contact layer improved the electrochemical performance of the test cell, significantly reduced the contact resistance.
Key words:  solid oxide electrolysis cell    anode-side contact layer    (Cu,Mn)3O4 spinel    reactive sintering    area-specific resistance (ASR)
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TK91  
基金资助: 南方电网公司科技项目(GZHKJXM20190109);中国科学院洁净能源先导科技专项(XDA210000);中国科学院青年创新促进会基金(E129051031)
通讯作者:  *余喻天,中国科学院上海应用物理研究所工程师。2014年南昌航空大学机械系本科毕业,2020年美国田纳西理工大学博士毕业后到中国科学院上海应用物理研究所工作至今。目前主要从事高温固体氧化物电解池等方面的研究工作。发表论文十余篇,包括International Journal of Hydrogen、Journal of the Eelectrochemical Society、Solid State Ionics、Coatings、FuelCells等。yuyutian@sinap.ac.cn   
作者简介:  黄旭锐,工程师。2013年华南理工大学电气工程及其自动化专业本科毕业,2016年华中科技大学电气工程专业硕士毕业后到广东电网有限责任公司广州供电局工作至今。目前主要从事电氢耦合系统、综合能源等方面的研究工作。
引用本文:    
黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
HUANG Xurui, YU Yutian, LEI Jinyong, HAO Jingxuan, YU Chuanxin, PAN Jun, YANG Yiping, LIAO Zihao, GUAN Chengzhi, WANG Jianqiang. Application of Electrically-conductive (Cu, Mn)3O4 Contact Layer on Anode-Side of SOEC. Materials Reports, 2024, 38(8): 23040278-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040278  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23040278
1 Wang Y, Liu T, Journal of the Chinese Cereamic Society, 2021, 49(1), 189(in Chinese)
王瑶, 刘通. 硅酸盐学报, 2021, 49(1), 189.
2 Zhang D, Wang Y, Peng Y H, et al. Advance Powder Materals, 2023, 2, 100129.
3 Yildiz B, Kazimi M. International Journal of Hydrogen Energy, 2006, 31, 77.
4 Zhu J H, Ghezel-Ayagh H. International Journal of Hydrogen Energy, 2017, 42, 24278.
5 Guan W B, Zhai H J, Jin J, et al. Fuel Cells, 2011, 11, 445.
6 Huang N, Han B B, Wang Y D, et al. International Journal of Hydroen Energy, 2021, 46, 20078.
7 Yang Z G, Xia G G, Singh P, et al. Journal of Power Sources, 2006, 155, 246.
8 Tucker M, Cheng L, DeJonghe L C. Journal of Power Sources, 2011, 196, 8313.
9 Simner S, Anderson M, Pederson L. Journal of the Electrochemical Society, 2005, 152, A1851.
10 Lu Z G, Zhu J H. Electrochemical and Solid-State Letters, 2007, 10, B179.
11 Wilkinson L, Zhu J H. Journal of the Electrochemical Society, 2009, 156, B905.
12 Morán-Ruiz A, Vidal K, Laguna-Bercero M, et al. Journal of Power Sources, 2014, 248, 1067.
13 Wang F Z, Yan D, Zhang W Y, et al. International Journal of Hydrogen Energy, 2013, 38, 646.
14 Basu R N, Tietz F, Teller O, et al. Journal of Solid State Electrochemistry, 2003, 7, 416.
15 Zhu J H, Chesson D, Yu Y T. Journal of the Electrochemical Society, 2021, 168, 114519.
16 Shaigan N, Qu W, Ivey D, et al. Journal of Power Sources, 2010, 195, 1529.
17 Mah J, Muchtar A, Somalu M, et al. International Journal of Hydrogen Energy, 2017, 42, 9219.
18 Shong W J, Liu C K, Shiu W H, et al. International Journal of Hydrogen Energy, 2019, 44, 4317.
19 Yu Y T, Zhu J H, Bates B. Solid State Ionics, 2018, 324, 40.
20 Yu Y T, Lu Y, Guan C Z, et al. International Journal of Hydrogen Energy, 2022, 47, 36964.
21 Ritucci I, Talic B, Kiebach R, et al. Journal of the European Ceramic Society, 2021, 41, 2699.
22 Petric A, Ling H. Journal of the American Ceramic Society, 2007, 90, 1515.
23 Chesson D, Zhu J H. Journal of the Electrochemical Society, 2020, 167, 124515.
24 Zhu J H, Geng S J, Lu Z G, et al. Journal of the Electrochemical Society, 2007, 154, B1288.
25 Fergus J. Material Science and Engineering A, 2005, 397, 271.
26 Tietz F, Raj I, Zahid M, et al. Progress in Solid State Chemistry, 2007, 35, 539.
27 Montero X, Tietz F, Stöver D, et al. Journal of Power Sources, 2009, 188, 148.
28 Konysheva E, Laatsch J, Wessel E, et al. Solid State Ionics, 2006, 177, 923.
29 Stevenson J, Yang Z G, Xia G G, et al. Journal of Power Sources, 2013, 231, 256.
30 Nakamura S, Nishikawa H, Aoki T, et al. Journal of Power Sources, 2009, 186, 278.
[1] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[2] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed