Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22050021-6    https://doi.org/10.11896/cldb.22050021
  无机非金属及其复合材料 |
ECC全包裹普通混凝土复合试件的力学性能
康迎杰1,2,3, 郭自利4, 叶斌斌4, 潘鹏4,5,*
1 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 河北省风工程和风能利用工程技术创新中心,石家庄 050043
3 石家庄铁道大学土木工程学院,石家庄 050043
4 清华大学土木工程系,北京 100084
5 清华大学土木工程安全与耐久教育部重点实验室,北京 100084
Mechanical Properties of Ordinary Concrete Confined with Engineered Cementitious Composites (ECC)
KANG Yingjie1,2,3, GUO Zili4, YE Binbin4, PAN Peng4,5,*
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province, Shijiazhuang 050043, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
4 Department of Civil Engineering, Tsinghua University, Beijing 100084, China
5 Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 22644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为综合利用工程用水泥基复合材料(ECC)在力学性能上和普通混凝土在成本上的优势,本工作提出了一种制备ECC全包裹普通混凝土复合试件的方法,通过进行抗压、抗拉及抗弯等试验系统研究了其基本力学性能,并采用数值分析方法对配筋复合梁进行了正截面受弯性能研究。结果表明:在复合试件受力破坏时,ECC和混凝土界面未出现滑移,两种材料黏结可靠实现了协同受力;相对普通混凝土试件而言,复合试件的抗压强度、抗拉强度及抗弯强度均有所提升,尤其是抗弯强度的提升最为显著,对于截面尺寸为100 mm×100 mm的梁,当ECC厚度分别为10 mm和15 mm时,抗弯强度可提高27.4%和57.1%;复合试件具有良好的延性变形能力,破坏后可保持一定的完整性,整体具备高韧性特征;与普通钢筋混凝土梁相比,配筋复合梁有效利用了ECC材料的性能优势,显著提升了配筋梁的承载和变形能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康迎杰
郭自利
叶斌斌
潘鹏
关键词:  工程用水泥基复合材料  复合试件  力学性能  延性破坏  高韧性    
Abstract: Composite specimens of ordinary concrete confined with engineered cementitious composites (ECC) were prepared, considering the comprehensive utilization of the advantage of ECC in mechanical properties and the low price of ordinary concrete. Tests of compressive, tensile, and flexural were carried out, and the basic mechanical properties of composite specimens were systematically studied. The bending behavior of reinforced composite beams was also studied by numerical analysis method. The results show that the interface between ECC and concrete did not slip when the composite specimen was damaged by force, and the two materials bonded reliably to achieve synergistic stresses. Compared with ordinary concrete specimens, the compressive strength, tensile strength and flexural strength of composite specimens are improved, especially the flexural strength are most significantly improved. For the beam with a section of 100 mm×100 mm, the flexural strength is increased by 27.4% and 57.1% respectively, when the thickness of ECC is 10 mm and 15 mm. The composite specimen has considerable ductile deformation ability, and can maintain a certain integrity after failure, so it has the characteristics of high toughness. Compared with ordinary reinforced concrete beams, reinforced composite beams can take advantage of the performance advantages of ECC to significantly improve the bearing and deformation capacity.
Key words:  engineered cementitious composites (ECC)    composite specimen    mechanical property    ductile failure    high toughness
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU528.1  
基金资助: 国家重点研发计划(2019YFC1907204)
通讯作者:  *潘鹏,清华大学工学学士、硕士,日本京都大学工学博士,日本学术振兴会外国特别研究员。现为清华大学土木水利学院教授、博士研究生导师,主要研究方向为韧性城镇与基础设施的建设和评估、高性能减隔震结构。先后在国内外高水平期刊、会议上发表论文100余篇,其中SCI收录60余篇,出版学术专著1本、教材2本。获国家科技进步一等奖、二等奖各1项,其他省部级科研奖励5项。获2015年国家自然科学基金委优秀青年基金,入选2017年教育部长江学者奖励计划特聘教授,2018年科技部中青年科技创新领军人才,2019年国家高层次人才特殊支持计划(万人计划)。panpeng@tsinghua.edu.cn   
作者简介:  康迎杰,博士,讲师。2019年6月于北京工业大学获得工学博士学位,2019年7月至2021年10月在清华大学土木系博士后流动站工作,随后至石家庄铁道大学工作至今。目前主要研究领域为结构韧性提升技术、结构振动控制,主持国家自然科学基金1项、国家重点研发计划项目子课题2项、河北省自然科学基金1项,为河北省自然科学基金创新研究群体成员,发表SCI/EI收录论文20余篇,获发明专利3项。
引用本文:    
康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
KANG Yingjie, GUO Zili, YE Binbin, PAN Peng. Mechanical Properties of Ordinary Concrete Confined with Engineered Cementitious Composites (ECC). Materials Reports, 2024, 38(3): 22050021-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050021  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22050021
1 Gao L, Guo E D, Zhao Y, et al. China Civil Engineering Journal, 2016, 49(3), 98(in Chinese).
高霖, 郭恩栋, 赵颖, 等. 土木工程学报, 2016, 49(3), 98.
2 Xu S L, Li H D. China Civil Engineering Journal, 2008, 41(6), 45 (in Chinese).
徐世烺, 李贺东. 土木工程学报, 2008, 41(6), 45.
3 Li Q H, Xu S L. Engineering Mechanics, 2009, 26(S2), 23 (in Chinese).
李庆华, 徐世烺. 工程力学, 2009, 26(S2), 23.
4 Wang Y C, Hou M J, Yu J T, et al. Materials Reports, 2018, 32(10), 3535 (in Chinese).
王义超, 侯梦君, 余江滔, 等. 材料导报, 2018, 32(10), 3535.
5 Wang Z B, Zhang J, Wang Q. Journal of Building Materials, 2018, 21(2), 216 (in Chinese).
王振波, 张君, 王庆. 建筑材料学报, 2018, 21(2), 216.
6 Hu C H, Gao Y E, Ding W C. Journal of Building Structures, 2013, 34(12), 135 (in Chinese).
胡春红, 高艳娥, 丁万聪. 建筑结构学报, 2013, 34(12), 135.
7 Li Q H, Huang B T, Zhou B M, et al. Journal of Building Structures, 2016, 37(1), 135 (in Chinese).
李庆华, 黄博滔, 周宝民, 等. 建筑结构学报, 2016, 37(1), 135.
8 Liu Z J, Li Y, Wen C G. Journal of Building Materials, 2016, 19(4), 746 (in Chinese).
刘泽军, 李艳, 温丛格. 建筑材料学报. 2016, 19(4), 746.
9 Cao M L, Xu L, Zhang C. Journal of the Chinese Ceramic Society, 2015, 43(5), 632 (in Chinese).
曹明莉, 许玲, 张聪. 硅酸盐学报, 2015, 43(5), 632.
10 Ma H Q, Cheng Y, Wu C. Construction and Building Materials, 2021, 287, 122719.
11 Kan L L, Zhang Z, Zhang L, et al. Engineering Mechanics, 2019, 36(11), 121 (in Chinese).
阚黎黎, 章志, 张利, 等. 工程力学, 2019, 36(11), 121.
12 Chen Y, Zhang H M. Structural Engineers, 2017, 33(3), 208 (in Chinese).
陈杨, 章红梅. 结构工程师, 2017, 33(3), 208.
13 Du W P, Yang C Q, Wu C. Materials Reports, 2021, 35(4), 67 (in Chinese).
杜文平, 杨才千, 王冲. 材料导报, 2021, 35(4), 67.
14 Fan J S, Liu R R, Zhang J, et al. China Civil Engineering Journal, 2021, 54(4), 54 (in Chinese).
樊健生, 刘入瑞, 张君, 等. 土木工程学报, 2021, 54(4), 54.
15 Lu J H, Zhang X F, Xu S L. Shui Li Xue Bao, 2012, 43(S1), 135 (in Chinese).
路建华, 张秀芳, 徐世烺. 水利学报, 2012, 43(S1), 135.
16 Xu S L, Cai X H. China Civil Engineering Journal, 2011, 44(5), 79 (in Chinese).
徐世烺, 蔡新华. 土木工程学报, 2011, 44(5), 79.
17 Li F H, Feng Z H, Deng K L, et al. Engineering Structures, 2019, 195, 223.
18 Zhang Q T, Xiao J Z, Zhang P, et al. Construction and Building Mate-rials, 2019, 229, 117050.
19 Ye B B, Han J G, Pan P, et al. Acta Materiae Compositae Sinica, 2019, 36(1), 245 (in Chinese).
叶斌斌, 韩建国, 潘鹏, 等. 复合材料学报, 2019, 36(1), 245.
20 Ye B B, Zhang Y T, Han J G, et al. Construction and Building Mate-rials, 2019, 226, 899.
21 Jiang S Y, Gong H W, Yao W L, et al. Materials Reports, 2018, 32(12), 4190 (in Chinese).
江世永, 龚宏伟, 姚未来, 等. 材料导报, 2018, 32(12), 4190.
22 Qiao Z, Pan Z F, Leung C K Y, et al. Journal of Southeast University (Natural Science), 2017, 47(4), 724 (in Chinese).
乔治, 潘钻峰, 梁坚凝, 等. 东南大学学报 (自然科学版), 2017, 47(4), 724.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed