Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 21-25    https://doi.org/10.11896/j.issn.1005-023X.2017.012.005
  材料研究 |
SnO2掺杂对BMN陶瓷结构及介电性能的影响*
彭森1,2, 吴孟强2, 黄同成1, 许建明1, 周建华1, 罗高峰1, 余建坤1, 张树人2
1 邵阳学院信息工程系, 邵阳 422000;
2 电子科技大学能源科学与工程学院, 成都 611731
Effect of SnO2 Doping on the Structure and Dielectric Properties of BMN Ceramics
PENG Sen1,2, WU Mengqiang2, HUANG Tongcheng1, XU Jianming1, ZHOU Jianhua1, LUO Gaofeng1, YU Jiankun1, ZHANG Shuren2
1 Department of Information Engineering, Shaoyang University, Shaoyang 422000;
2 School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731
下载:  全 文 ( PDF ) ( 1389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相烧结法制备Ba(Mg1/3Nb2/3)O3+x(x=0~8)% SnO2(BMSN,x为质量分数)微波介质陶瓷,并研究SnO2掺杂对Ba(Mg1/3Nb2/3)O3 (BMN)微波介质陶瓷结构及介电性能的影响。XRD分析表明,陶瓷体系中存在两种相,主晶相Ba(Mg1/3-Nb2/3)O3和附加相Ba5Nb4O15。随着x的增大,BMSN陶瓷体系的相结构逐渐由钙钛矿六方结构转变为立方结构,同时有序相逐渐由1∶2有序结构转变为1∶1有序结构。研究表明:添加适量的SnO2可以促进液相烧结,当SnO2掺杂质量分数为6%时,BMN陶瓷致密化烧结温度由纯相时的1 550 ℃以上降低至1 200 ℃,表观密度ρ = 6.39 g/cm3,相对理论密度为99.1%,此时BMSN陶瓷体系拥有优良的微波介电性能——高相对介电常数(εr=33.6),接近于零的谐振频率温度系数(τf=0.15×10-6-1),高品质因数与谐振频率的乘积(Q·f = 112 300 GHz (8 GHz))。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭森
吴孟强
黄同成
许建明
周建华
罗高峰
余建坤
张树人
关键词:  微波介质陶瓷  掺杂  晶体结构  介电性能    
Abstract: The structure and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 (BMN) ceramics doped with x(x=0-8)wt% SnO2 (BMSN) were investigated by the solid-state reaction technique. XRD analysis suggested there were two phases: main crystalline phase Ba(Mg1/3Nb2/3)O3 and secondary phase Ba5Nb4O15. As x value increased, the crystal structure changed from pe-rovskite hexagonal structure to cubic structure and the ordered phase changed from 1∶2 ordered structure to 1∶1 ordered structure. It was found that the liquid phase sintering can be promoted greatly by adding an appropriate amount of SnO2. When 6wt% SnO2 was added, the BMN ceramic showed a lower sintering temperature (1 550 ℃) compared to pure BMN (1 200 ℃), an apparent density ρ of 6.39 g/cm3, a relative theoretical density of 99.1%, also excellent microwave dielectric properties: high relative dielectric constant(εr= 33.6), near-zero temperature coefficient of resonant frequency value τf=0.15×10-6-1, high quality factor plus resonant frequency (Q·f=112 300 GHz (8 GHz)).
Key words:  microwave dielectric ceramic    doping    crystal structure    dielectric property
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TM277  
基金资助: *国家自然科学基金 (61135004);湖南省自然科学基金 (14JJ7075;15JJ2130);湖南省教育厅基金 (13A091;14A129;07C681);邵阳学院资助项目(2016JG43)
通讯作者:  吴孟强:通讯作者,男,1970年生,博士,教授,主要从事微波介质材料与器件、新能源材料与器件的研究开发 E-mail:mwu@uestc.edu.cn   
作者简介:  彭森:男,1983年生,硕士,讲师,主要从事微波介质材料与器件的研究
引用本文:    
彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
PENG Sen, WU Mengqiang, HUANG Tongcheng, XU Jianming, ZHOU Jianhua, LUO Gaofeng, YU Jiankun, ZHANG Shuren. Effect of SnO2 Doping on the Structure and Dielectric Properties of BMN Ceramics. Materials Reports, 2017, 31(12): 21-25.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.005  或          https://www.mater-rep.com/CN/Y2017/V31/I12/21
1 Ma P P, Yi L, Liu X Q, et al. Effects of post-densification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6-x/2Zn0.4-x/2Mgx)1/3Nb2/3)O3 ceramics[J]. J Am Ceram Soc,2013,96(11):3417.
2 Yue Z X, Shi F, et al. Far-infrared reflection study on crystal structures and dielectric properties of Ba(Mg1/3Ta2/3)O3-BaWO4 ceramics[J]. J Mater Sci: Mater Electron,2014,26(2):711.
3 Shi F, Dong H L. Correlation of phonon characteristics and crystal structures of Ba[Zn1/3(Nb1-xTax)2/3]O3 solid solutions[J]. J Appl Phys,2012,111(1):014111.
4 Yang Baoju, Yin Yansheng, Zhang Weike,et al. Determination of TiAl/B4C composite ceramic sintering process parameters [J]. J Chongqing Inst Technol: Nat Sci Ed,2009,23(4):142(in Chinese).
杨宝菊, 尹衍升, 张卫珂, 等. TiAl/B4C复合陶瓷烧结工艺参数的确定[J]. 重庆工学院学报: 自然科学版,2009,23(4):142.
5 Nomura S. Ceramics for microwave dielectric resonators [J]. Ferroelectrics,1983,49(1-4):61.
6 Chen F L, Hong H L, et al. Microstructural characteristics and microwave dielectric properties of Ba[Mg1/3(Nbx/4Ta(4-x)/4)2/3]O3 ceramics[J]. J Alloy Compd,2006,407(1-2):318.
7 Liu H X, Tian Z Q. New microwave dielectric ceramics with near-zero τf in the Ba(Mg1/3Nb2/3)O3-Ba(Ni1/3Nb2/3)O3 system[J]. J Mater Sci,2004,39(13):4319.
8 Shan L,Pan W. Effect of V2O5 addition on the microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics[J]. Key Eng Mater,2007,336(2):301.
9 Lim J B, Kim D H, et al. Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics[J]. Mater Res Bull,2006,41(6):1199.
10 Kim Y W, Park J H, Park J G. Local cationic ordering behavior in Ba(Mg1/3Nb2/3)O3 ceramic[J]. J Eur Ceram Soc,2004,24(6):1775.
11 Tang B, Fang Z X, Li Y X, et al.Microwave dielectric properties of Ba(Co0.56Y0.04Zn0.35)1/3Nb2/3+xO3(x =-0.004~0.008) ceramics[J]. J Mater Sci: Mater Electron,2015,26(9):6585.
12 Sun T L, Chen X M. Raman spectra analysis for Ba[(Mg1-xNix)1/3-Nb2/3]O3 microwave dielectric ceramics[J]. AIP Adv,2015,5(1):3.
13 Desu S B, O′Bryan H M. Microwave loss quality of BZT ceramics[J]. J Am Ceram Soc,1985,68(10):546.
14 Ning P F, Li L X, et al. Raman scattering, electronic structure and microwave dielectric properties of Ba([Mg1-xZnx]1/3Ta2/3)O3 ceramics[J]. Ceram Int,2012,38(2):1391.
15 Zhang H, Diao H L, et al. XRD and Raman study on crystal structures and dielectric properties of Ba[Mg(1-x)/3ZrxNb2(1-x)/3]O3 so-lid solutions[J]. Ceram Int,2014,40(1):2427
16 Colla E L, Reaney I M, Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity[J]. J Appl Phys,1993,74(5):3414.
17 Lim J B, Son J, Nahm S,et al. Low-temperature sintering of B2O3-added Ba(Mg1/3Nb2/3)O3 ceramics[J]. Jpn J Appl Phys,2004,43(8R):5388.
18 Wang Dongmei, Mao Hong, Wu Mengqiang,et al. Effect of Ca-B-Si glass doping on the microwave dielectric properties of Ba(Mg1/3-Nb2/3)O3[J].Ceram Electron Components Mater,2010,29(1):22(in Chinese).
王冬梅,毛宏,吴孟强,等. Ca-B-Si掺杂对 Ba(Mg1/3Nb2/3)O3陶瓷介电性能的影响[J]. 电子元件与材料,2010,29(1):22.
19 Sun T L, Li L, Mao M M, et al. Effects of postdensification annealing on microwave dielectric properties of Ba([Mg1-xCox]1/3Nb2/3)-O3 ceramics[J]. Int J Appl Ceram Technol,2013,10(S1):E210.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[5] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[6] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[7] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[10] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[11] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[12] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[13] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[14] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[15] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed