Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 77-81    https://doi.org/10.11896/j.issn.1005-023X.2017.02.017
  材料研究 |
原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响*
梁宇1,2, 向嵩1,2, 梁益龙1,2, 杨明1,2, 魏泽民1,2, 熊虎1,2, 李静1,2
1 贵州大学材料与冶金学院, 贵阳550025;
2 贵州省材料结构与强度重点实验室, 贵阳 550025;
Effect of Prior Austenite Grain Size on Microstructure and Toughness of Pearlitic Steel
LIANG Yu1,2, XIANG Song1,2, LIANG Yilong1,2, YANG Ming 1,2,
WEI Zemin1,2, XIONG Hu1,2, LI Jing1,2
1 School of Materials and Metallurgy, Guizhou University, Guiyang 550025;
2 The Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guiyang 550025;
下载:  全 文 ( PDF ) ( 2323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探索了奥氏体晶粒尺寸对珠光体等温转变组织特征以及对韧性性能的影响规律。研究表明,在相同等温转变温度下,珠光体片层间距无明显变化,随奥氏体晶粒尺寸的增加,先共析铁素体量减少而珠光体团尺寸增加。珠光体断裂韧性受控于裂纹前沿塑性影响区尺寸(1~2)δc,其中δc为临界裂纹张开位移,当原奥氏体晶粒大于(1~2)δc时,裂纹扩展阻力主要来自穿越珠光体片层α、θ相的颈缩、破断。当原奥氏体晶粒尺寸接近或小于(1~2)δc时,裂纹主要沿晶界、珠光体团界、α+θ片层界面扩展,通过扩展路径发生多次弯折消耗能量,随原奥氏体晶粒尺寸增加,准静态断裂韧度J变化幅度较小。而冲击韧性缺口前沿塑性影响区远大于原奥氏体晶粒,大角度晶界将促使裂纹的转折而提高扩展阻力,提高裂纹前沿塑性区大角度晶界密度有利于提高冲击功,冲击韧性Ak随晶粒尺寸的增加显著下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宇
向嵩
梁益龙
杨明
魏泽民
熊虎
李静
关键词:  珠光体  奥氏体晶粒尺寸  韧性  裂纹路径    
Abstract: The effect of prior austenite grain size on the pearlitic microstructure and toughness was investigated. Experimental results showed that the interlamellar spacing had no obvious change under the same isothermal transformation temperature. The proeutectoid ferrite percentage decreased and the pearlitic colony size increased with the increase of the prior austenite grain size. The fracture toughness was controlled by the microplasticity zone ((1-2)δc) at the crack tip, and the δc was opening displacement of cri-tical crack. If prior austenite grain size was larger than (1-2)δc, the majority of crack propagation resistance came from necking and breaking of the pearlitic lamellar α and θ phase. If prior austenite grain size was close to or less than (1-2)δc, crack propagation mainly went through the grain boundaries, pearlitic colony boundaries and α+θ lamellar interface, which caused high crack tortuosity. The crack propagation resistance came from the crack deflection and branching. And the quasi-static fracture toughness J had small changes with the increase of prior austenite grain size. While the front microplasticity zone of the impact toughness notch was much larger than the prior austenite grain size. High angle grain boundary in the microplasticity zone would cause the crack deflection and branching, which increased the crack growth resistance. Improving high angle grain boundary density of the plastic zone was beneficial to improve the impact toughness, and the impact toughness decreased significantly with the increase of prior austenite grain size.
Key words:  pearlite    austenite grain size    toughness    crack propagation path
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB31  
  TG115.5  
基金资助: *国家自然科学基金(51461007;51361004);贵州省重大应用基础研究项目([2014]2003)
作者简介:  梁宇:男,1978年生,博士,教授,研究方向为金属材料结构性能与相变 E-mail:xq.liangyu@126.com 梁益龙:通讯作者,男,1955年生,教授,博士研究生导师,研究方向为金属材料组织性能 E-mail:liangyilong@126.com
引用本文:    
梁宇, 向嵩, 梁益龙, 杨明, 魏泽民, 熊虎, 李静. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 77-81.
LIANG Yu, XIANG Song, LIANG Yilong, YANG Ming,
WEI Zemin, XIONG Hu, LI Jing. Effect of Prior Austenite Grain Size on Microstructure and Toughness of Pearlitic Steel. Materials Reports, 2017, 31(2): 77-81.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.017  或          https://www.mater-rep.com/CN/Y2017/V31/I2/77
1 Zhang X D, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Mater,2011,59:3422.
2 Lee S K, Kim D W, et al. Evaluation of axial surface residual stress in 0.82-wt% carbon steel wire during multi-pass drawing process considering heat generation[J]. Mater Des,2012,34:363.
3 Elwazri A M, Wanjara P, Yuea S. The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel[J]. Mater Sci Eng A,2005,404:91.
4 Aranda M M, Kim B, Rementeria R,et al. Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe-C-Mn steel[J]. Metall Mater Trans A,2014,45:1778.
5 Elwazri A M, Yue S. Effect of pearlite structure on the mechanical properties of microalloyed hypereutectoid steels[J].Mater Sci Forum,2005,500-501:737.
6 Nam W J, Bae C M, Oh Sei J, et al. Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires[J]. Scripta Mater,2000,42:457.
7 Toribio J. Relationship between microstructure and strength in eutectoid steels[J]. Mater Sci Eng A,2004,387-389:227.
8 Sakamoto H, Toyama K, Hirakawa K. Fracture toughness of me-dium-high carbon steel for railroad wheel[J].Mater Sci Eng A,2000,285(1-2):288.
9 Wu S, Li X C, Zhang J, et al. Effect of Nb on transformation and microstructure refinement in medium carbon steel[J].Acta Metall Sin,2014,50(4):400(in Chinese).
吴斯,李秀程,张娟,等.Nb对中碳钢相变和组织细化的影响[J].金属学报,2014,50(4):400.
10 Zheng S C, Li L F, Yang W Y, et al. Influence of microstructure of eutectoid steel on room temperature work-hardening behavior[J].Acta Metall Sin,2013,49(3):257(in Chinese).
郑成思,李龙飞,杨王玥,等.微观组织对共析钢室温加工硬化行为的影响[J].金属学报,2013,49(3):257.
11 Gladman T, Mclvor L D, Pichering F B. Some aspects of the structure-property relationships in high-carbon ferrite-pearlite steels[J]. Iron Steel Institute,1972,210:916.
12 Bae C M, Lee C S, Nam W J. Effect of carbon content on mechanical properties of fully pearlitic steels[J]. Mater Sci Technol,2002,18(11):1317.
13 钟群鹏.裂纹学[M].北京:高等教育出版社,2014:206.
14 Dai P Q, He Z R, Mao Z Y. In situ TEM observation of crack ini-tiation and propagation in pearlite[J].Trans Mater Heat Treatment,2003,24(2):41(in Chinese).
戴品强, 何则荣, 毛志远. 珠光体裂纹萌生与扩展的TEM原位观察[J]. 材料热处理学报,2003,24(2):41.
15 Duan G H, Zhang P, Li J X.In situ studies on the effect of ferrite and pearlite contents on the deformation process[J].J University of Science and Technology Beijing,2014,36(8):1032(in Chinese).
段桂花,张平,李金许,等.铁素体和珠光体含量影响变形过程的原位研究[J].北京科技大学学报,2014,36(8):1032.
16 Izotov V I, Pozdnyakov V A, Luk′yanenko E V, et al. Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel[J]. Phys Metals Metallography,2007,103(5):519.
17 Miller L E,Smith G C. Tensile fracture in carbon steels[J].J Iron Steel Inst,1970,208(11):998.
18 Mcmeeking R M. Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture[J].J Mechan Phys Solids,1977,25(5):357.
19 Liang Y L, Lei M, Zhong S H,et al. The relationship between fracture toughness and notch toughness, tensile ductilities in lath martensite steel[J].Acta Metall Sin,1998,34(9):950(in Chinese).
梁益龙,雷昊,钟蜀辉,等.板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J].金属学报,1998,34(9):950.
20 Sun Q, Wang X N, et al. Effect of microstructure on fracture toughness of new type hot-rolled nano-scale precipitation strengthening steel[J].Acta Metall Sin,2013,49(12):1501(in Chinese).
孙茜,王晓南,等.显微组织对新型热轧纳米析出强化钢断裂韧性的影响[J].金属学报,2013,49(12):1501.
21 Hwang B, Chang G L, Lee T H.Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper[J].Metall Mater Trans A,2010,41(1):85.
22 Byun J S,Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J].Acta Mater,2003,51(6):1593.
23 Lambert-Perlade A, Sturel T, Gourgues A F, et al. mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel[J].Metall Mater Trans A,2004,35(13):1039.
24 Diaz-Fuentes M, Iza-Mendia A, Gutierrez I.Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior[J].Metall Mater Trans A,2003,34(11):2505.
25 Zhao M C, Hanamura T, Qiu H, et al. Lath boundary thin-film martensite in acicular ferrite ultralow carbon pipeline steels[J].Mater Sci Eng A,2005,395(1-2):327.
26 Lan L Y, Qiu C L, et al. Microstructure characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel[J].Acta Metall Sin,2011,47(8):1046(in Chinese).
兰亮云, 邱春林,等.低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J].金属学报,2011,47(8):1046.
[1] 刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
[2] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[5] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[6] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[7] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[8] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[9] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[10] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[11] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[12] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[13] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[14] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[15] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed